实时计算 Flink版

首页 标签 实时计算 Flink版
终于等到你!阿里正式向 Apache Flink 贡献 Blink 源码
如同我们去年12月在 Flink Forward China 峰会所约,阿里巴巴内部 Flink 版本 Blink 将于 2019 年 1 月底正式开源。今天,我们终于等到了这一刻。
数据仓库介绍与实时数仓案例
1.数据仓库简介 数据仓库是一个面向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策。
搜索双链路实时计算体系@双11实战
该文章来自阿里巴巴技术协会(ATA)精选集  0. 前言 何为双链路实时计算体系?微观实时计算链路 a) 最细粒度商品/店铺/用户数据的实时 b) 底层模型的实时宏观实时计算链路 相比微观实时,宏观实时的对象粒度更粗,更上层 a) 以实时效果为目标,基于bandit learning的实
Flink 原理与实现:理解 Flink 中的计算资源
本文所讨论的计算资源是指用来执行 Task 的资源,是一个逻辑概念。本文会介绍 Flink 计算资源相关的一些核心概念,如:Slot、SlotSharingGroup、CoLocationGroup、Chain等。并会着重讨论 Flink 如何对计算资源进行管理和隔离,如何将计算资源利用率最大化等等。理解 Flink 中的计算资源对于理解 Job 如何在集群中运行的有很大的帮助,也有利于我们更透彻
Flink Table/SQL API 规划 —— Dynamic Table
动态表直观上看是一个类似于数据库中的`Materialized View`概念。动态表随着时间改变;类似静态的batch table一样可以用标准SQL进行查询然后一个新的动态表;可以和流无损地互相转换(对偶的)。
Flink 原理与实现:Window 机制
Flink 认为 Batch 是 Streaming 的一个特例,所以 Flink 底层引擎是一个流式引擎,在上面实现了流处理和批处理。而窗口(window)就是从 Streaming 到 Batch 的一个桥梁。Flink 提供了非常完善的窗口机制,这是我认为的 Flink 最大的亮点之一(其他的亮点包括消息乱序处理,和 checkpoint 机制)。本文我们将介绍流式处理中的窗口概念,介绍 F
【译】用SQL统一所有:一种有效的、语法惯用的流和表管理方法
现在还没有一个统一的流式SQL语法标准,各家都在做自己的。本文在一些业界应用的基础上提出了一个统一SQL语法的建议。Spark同样存在这个问题,社区版本在流式SQL上迟迟没有动作。EMR Spark在今年上半年提供了自己设计版本的流式SQL支持,也会在后续的更新中吸收和支持这些优秀的设计建议。
使用 Kafka 和 Flink 构建实时数据处理系统
引言 在很多领域,如股市走向分析, 气象数据测控,网站用户行为分析等,由于数据产生快,实时性强,数据量大,所以很难统一采集并入库存储后再做处理,这便导致传统的数据处理架构不能满足需要。流计算的出现,就是为了更好地解决这类数据在处理过程中遇到的问题。
免费试用