TensorFlow

首页 标签 TensorFlow
# TensorFlow #
关注
5057内容
ONNX 与量化:提高模型效率
【8月更文第27天】随着人工智能技术的广泛应用,模型部署变得越来越重要。为了在资源受限的设备上运行复杂的机器学习模型,模型量化技术成为了一种有效的手段。Open Neural Network Exchange (ONNX) 作为一种开放格式,支持在不同框架之间交换训练好的模型,同时也支持模型量化。本文将探讨如何结合 ONNX 和模型量化技术来提高模型的效率,减少模型大小并加快推理速度。
Pytorch学习笔记(二):nn.Conv2d()函数详解
这篇文章是关于PyTorch中nn.Conv2d函数的详解,包括其函数语法、参数解释、具体代码示例以及与其他维度卷积函数的区别。
Pip命令更换国内源
【8月更文挑战第7天】Pip命令更换国内源。
|
9月前
| |
你的旧电脑还跑得动AI吗?ToDesk云电脑/青椒云/顺网云算力支持实测报告
随着AI大模型的崛起及广泛应用,旧电脑显示出了硬伤,硬件配置方面,老旧的 CPU、GPU 性能不足,运算速度缓慢,导致 AI 模型训练和推理耗时极长。内存与存储有限,无法承载大型 AI 数据集和复杂模型。散热不佳,运行 AI 任务时易过热死机。且旧电脑可能不兼容新的 AI 框架与工具,软件更新困难。这使得用户在利用旧电脑探索 AI 时,体验大打折扣,而 ToDesk云电脑、青椒云、顺网云等或许能为解决这些问题带来新契机。今天就来实测一下常用的ToDesk云电脑/青椒云/顺网云,博主将从功能、优缺点等方面为你深度剖析这几款云电脑,帮你选出最适合的那一款!🏆
边缘计算 | 在移动设备上部署深度学习模型的思路与注意点 ⛵
本文介绍AI模型适用于小型本地设备上的方法技术:压缩模型参数量,设计更小的模型结构,知识蒸馏,调整数据格式,数据复用等,并介绍移动小处理设备的类型、适用移动设备的模型框架等。
免费试用