TensorFlow

首页 标签 TensorFlow
# TensorFlow #
关注
5062内容
|
1天前
|
Java与边缘AI:构建离线智能的物联网与移动应用
随着边缘计算和终端设备算力的飞速发展,AI推理正从云端向边缘端迁移。本文深入探讨如何在资源受限的边缘设备上使用Java构建离线智能应用,涵盖从模型优化、推理加速到资源管理的全流程。我们将完整展示在Android设备、嵌入式系统和IoT网关中部署轻量级AI模型的技术方案,为构建真正实时、隐私安全的边缘智能应用提供完整实践指南。
134_边缘推理:TensorFlow Lite - 优化移动端LLM部署技术详解与实战指南
在人工智能与移动计算深度融合的今天,将大语言模型(LLM)部署到移动端和边缘设备已成为行业发展的重要趋势。TensorFlow Lite作为专为移动和嵌入式设备优化的轻量级推理框架,为开发者提供了将复杂AI模型转换为高效、低功耗边缘计算解决方案的强大工具。随着移动设备硬件性能的不断提升和模型压缩技术的快速发展,2025年的移动端LLM部署已不再是遥远的愿景,而是正在成为现实的技术实践。
|
6天前
|
19_Word2Vec详解:训练你的词嵌入
在自然语言处理(NLP)领域,如何将词语转换为计算机可理解的数值表示一直是核心挑战之一。从早期的one-hot编码到如今的预训练语言模型嵌入,词表示技术经历了革命性的演变。其中,Word2Vec作为2013年由Google提出的开创性模型,为现代词嵌入技术奠定了基础。尽管在2025年,我们已经拥有了更多先进的词嵌入方法,但Word2Vec依然是理解词向量本质和深度学习文本表示的重要基石。
|
6天前
|
21_RNN与LSTM:序列建模的经典方法
在自然语言处理领域,处理序列数据是一个核心挑战。传统的机器学习方法难以捕捉序列中的时序依赖关系,而循环神经网络(Recurrent Neural Network,RNN)及其变种长短期记忆网络(Long Short-Term Memory,LSTM)通过其独特的循环结构,为序列建模提供了强大的解决方案。本教程将深入探讨RNN和LSTM的原理、实现方法和最新应用,帮助读者全面掌握这一NLP核心技术。
66_框架选择:PyTorch vs TensorFlow
在2025年的大语言模型(LLM)开发领域,框架选择已成为项目成功的关键决定因素。随着模型规模的不断扩大和应用场景的日益复杂,选择一个既适合研究探索又能支持高效部署的框架变得尤为重要。PyTorch和TensorFlow作为目前市场上最主流的两大深度学习框架,各自拥有独特的优势和生态系统,也因此成为开发者面临的经典选择难题。
TensorFlow与PyTorch深度对比分析:从基础原理到实战选择的完整指南
蒋星熠Jaxonic,深度学习探索者。本文深度对比TensorFlow与PyTorch架构、性能、生态及应用场景,剖析技术选型关键,助力开发者在二进制星河中驾驭AI未来。
|
7天前
|
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic,深度学习探索者。深耕TensorFlow与PyTorch,分享框架对比、性能优化与实战经验,助力技术进阶。
|
16天前
|
【变分高斯Copula推断】基于Bernstein多项式的非参数转换则在描述单变量边缘后验时提供了充分的灵活性(Matlab代码实现)
【变分高斯Copula推断】基于Bernstein多项式的非参数转换则在描述单变量边缘后验时提供了充分的灵活性(Matlab代码实现)
|
1月前
| |
来自: 物联网
TensorFlow Lite Micro:嵌入式TinyML系统上的机器学习推理框架——论文深度解析
TensorFlow Lite Micro(TFLM)是专为嵌入式系统设计的轻量级机器学习推理框架,适用于仅有几十KB内存的微控制器。它通过极简架构、模块化设计和内存优化策略,在资源受限设备上高效运行TinyML模型,广泛应用于关键词检测、传感器分析、预测性维护等领域。TFLM支持跨平台部署,并允许硬件厂商提供定制优化,兼顾灵活性与性能。
免费试用