阿里巴巴达摩院“绿色能源AI”解决方案
阿里巴巴达摩院决策智能实验室致力于研究决策智能系统需要的国际前沿技术,提升业务运营效率和收益、降低成本。在电力能源行业构建出“绿色能源AI”方案,与国家电网、南方电网等企业合作落地多个项目。代表作软件是行业领先的MindOpt优化求解器、智能电力预测eForecaster、MindOpt Studio决策开发云平台。研究方向包含机器学习、数学建模、优化求解、 时序预测、因果分析、决策方案可解释性、决策推理大模型等。本篇是达摩院“绿色能源AI"方案的介绍幻灯片图,供大家了解方案的能力。
如何向大模型注入知识?达摩院通义对话模型SPACE系列探索
如何将人类先验知识低成本融入到预训练模型中一直是个难题。达摩院对话智能团队提出了一种基于半监督预训练的新训练方式,将对话领域的少量有标数据和海量无标数据一起进行预训练,从而把标注数据中蕴含的知识注入到预训练模型中去,打造了SPACE 1/2/3 系列模型,在11个国际公开对话数据集取得SOTA。
基于ModelScope,视觉AI启动模型开放之路
计算机视觉是人工智能的基石之一,也是应用最广泛的AI技术,从日常手机解锁使用的人脸识别,再到火热的产业前沿自动驾驶,视觉AI都大显身手。作为一名视觉AI从业者,我认为视觉AI的潜能远未得到充分发挥,穷尽我们这些研究者的力量,也只能覆盖少数行业和场景,远未能满足全社会的需求。因此,在AI模型社区魔搭ModelScope上,我们决定全面开源达摩院研发的视觉AI模型,首批达101个,其中多数为SOTA或
混合整数线性规划-仓库选址问题-达摩院MindOpt
仓库选址问题是一个重要的运筹学问题,它涉及到在一个给定的地理区域中选择最佳的仓库位置以最小化总成本或者提高效率。仓库选址问题在现代物流和供应链管理中具有重要的应用,因为仓库的位置直接影响到货物的运输成本、交货时间和库存量等因素。
阿里AI赛道明星班,荣耀启航
时势造英雄,这是个创业最好的时代,在人工智能的大潮流兴起了无数个新的机会,也势必会有更多的企业能够登上时代的浪潮之巅。可是创业不易,创业过程中的资本问题、大公司布局、行业人脉等都是每一位初创公司的"阿克琉斯之踵"。