联邦学习系统攻击与防御技术研究综述
联邦学习作为新兴技术,能解决分布式数据隐私泄露问题,广泛应用于各领域。但其在数据收集、训练和推理阶段存在安全与隐私威胁。本文围绕机密性、完整性和可用性,定义联邦学习的安全属性,系统综述攻击方式(投毒、对抗样本、推理攻击等)及防御手段(鲁棒性提升、隐私增强技术),并提出未来研究方向。
《区块链为翼,开启物联网数据可信共享新时代》
在万物互联时代,物联网(IoT)设备产生海量数据,但数据共享面临信任缺失、孤岛化等困境。区块链的分布式账本技术通过去中心化、不可篡改、可追溯和共识机制,为解决这些问题提供了新思路。它确保数据来源可信、传输安全,并通过智能合约实现自动化、透明化的数据共享。应用案例如沃尔玛的食品供应链追踪和GE的工业设备监控,展示了其巨大潜力。尽管存在性能瓶颈和隐私保护挑战,区块链有望打破数据孤岛,释放物联网数据价值,推动产业创新与变革。