流计算

首页 标签 流计算
# 流计算 #
关注
31132内容
独家专访阿里集团副总裁贾扬清:我为什么选择加入阿里巴巴?
在这次访谈中,贾扬清向我们透露了他加入阿里的原因,并对他目前在阿里主要负责的工作做了详细说明,他不仅回顾了过去 6 年 AI 框架领域发生的变化,也分享了自己对于 AI 领域现状的观察和对未来发展的思考。结合自己的经验,贾扬清也给出了一些针对 AI 方向选择和个人职业发展的建议,对于 AI 从业者来
实时计算 Flink SQL 核心功能解密
Flink SQL 是于2017年7月开始面向集团开放流计算服务的。虽然是一个非常年轻的产品,但是到双11期间已经支撑了数千个作业,在双11期间,Blink 作业的处理峰值达到了5+亿每秒,而其中仅 Flink SQL 作业的处理总峰值就达到了3亿/秒。
Flink SQL 功能解密系列 —— 维表 JOIN 与异步优化
流计算中一个常见的需求就是为数据流补齐字段。因为数据采集端采集到的数据往往比较有限,在做数据分析之前,就要先将所需的维度信息补全。比如采集到的交易日志中只记录了商品 id,但是在做业务时需要根据店铺维度或者行业纬度进行聚合,这就需要先将交易日志与商品维表进行关联,补全所需的维度信息。
Blink 有何特别之处?菜鸟供应链场景最佳实践
> 作者:晨笙、缘桥 菜鸟供应链业务链路长、节点多、实体多,使得技术团队在建设供应链实时数仓的过程中,面临着诸多挑战,如:如何实现实时变Key统计?如何实现实时超时统计?如何进行有效地资源优化?如何提升多实时流关联效率?如何提升实时作业的开发效率? 而 Blink 能否解决这些问题?下面一起来深入了解。 ## 背景 菜鸟从2017年4月开始探索 Blink(即 Apache
流计算StreamCompute
背景 每年的双十一除了“折扣”,全世界(特别是阿里人)都关注的另一个焦点是面向媒体直播的“实时大屏”(如下图所示)。包括总成交量在内的各项指标,通过数字维度展现了双十一狂欢节这一是买家,卖家及物流小二一起创造的奇迹! 双十一媒体直播大屏 这一大屏背后需要实时处理海量的庞大电商系统各个模块产生的
现代流式计算的基石:Google DataFlow
0. 引言 今天这篇继续讲流式计算。毫无疑问,Apache Flink 和 Apache Spark (Structured Streaming)现在是实时流计算领域的两个最火热的话题了。那么为什么要介绍 Google Dataflow 呢?Streaming Systems 这本书在分析 Fli...
即将发版!Apache Flink 1.9 版本有哪些新特性?
文整理自开源大数据专场中阿里巴巴高级技术专家杨克特(鲁尼)先生的精彩演讲,主要讲解了Apache Flink过去和现在的发展情况,同时分享了对Apache Flink未来发展方向的理解。
阿里开源消息中间件RocketMQ的前世今生
昨天,我们将分布式消息中间件RocketMQ捐赠给了开源软件基金会Apache。 孵化成功后,RocketMQ或将成为国内首个互联网中间件在Apache上的顶级项目。
一文揭秘阿里实时计算Blink核心技术:如何做到唯快不破?
本文主要讲解阿里巴巴实时大数据和相关的机器学习技术,以及这些技术如何实现大数据升级,最终取得卓越的双11战果。
免费试用