流计算

首页 标签 流计算
# 流计算 #
关注
31318内容
Flink技术源码解析(一):Flink概述与源码研读准备
一、前言 Apache Flink作为一款高吞吐量、低延迟的针对流数据和批数据的分布式实时处理引擎,是当前实时处理领域的一颗炙手可热的新星。关于Flink与其它主流实时大数据处理引擎Storm、Spark Streaming的不同与优势,可参考https://blog.csdn.net/cm_chenmin/article/details/53072498。 出于技术人对技术本能的好奇与冲动,
深入理解Flink Streaming SQL
序言        时效性提升数据的价值,所以Flink这样的流式(Streaming)计算系统应用得越来越广泛。        广大的普通用户决定一个产品的界面和接口。       ETL开发者需要简单而有效的开发工具,从而把更多时间花在理业务和对口径上。  &n
| |
来自: 云原生
全面提升,阿里云 Docker / Kubernetes(K8S) 日志解决方案与选型对比
日志服务再次升级Kubernetes(K8S)的日志解决方案。1分钟内即可完成整个集群部署,支持动态扩容,提供采集宿主机日志、容器日志、容器stdout等所有数据源的一站式采集。
Pick!闲鱼亿级商品库中的秒级实时选品
作者:闲鱼技术-剑辛 一、业务背景 在电商运营工作中,营销活动是非常重要的部分,对用户增长和GMV都有很大帮助。对电商运营来说,如何从庞大的商品库中筛选出卖家优质商品并推送给有需要的买家购买是每时每刻都要思索的问题,而且这个过程需要尽可能快和实时。
Flink SQL 功能解密系列 —— 流计算“撤回(Retraction)”案例分析
通俗讲retract就是传统数据里面的更新操作,也就是说retract是流式计算场景下对数据更新的处理方式。
月活用户达7.55亿,阿里淘系如何在后流量时代引爆用户增长? | 9月17号栖夜读
今天的首篇文章,讲述了:当下,流量为王的时代慢慢走远,获取用户的难度越来越大,成本越来越高。阿里巴巴是如何用最少的成本获取流量,真正将用户留存下来?如何用精益化方式提升转化,把现有流量快速变现?如何打破流量瓶颈,实现持续增长?又是如何发掘不同用户群的核心需求,围绕核心需求打造用户持续增长方法论的呢?
10年+,阿里沉淀出怎样的搜索引擎?
阿里妹导读:搜索引擎是阿里的10年+沉淀,具有很高的技术/业务/商业价值。1688很多场景都借助了搜索中台的能力,基于此,以1688主搜为例介绍搜索全链路知识点,希望对你有所借鉴,有所启发。
Kafka、RabbitMQ、RocketMQ等消息中间件的对比 —— 消息发送性能和优势
Kafka、RabbitMQ、RocketMQ等消息中间件的对比 —— 消息发送性能和优势http://www.bieryun.com/1354.html 引言 分布式系统中,我们广泛运用消息中间件进行系统间的数据交换,便于异步解耦。
免费试用