《Kafka Stream》调研:一种轻量级流计算模式
流计算,已经有Storm、Spark,Samza,包括最近新起的Flink,Kafka为什么再自己做一套流计算呢?Kafka Stream 与这些框架比有什么优势?Samza、Consumer Group已经包装了Kafka轻量级的消费功能,难道不够吗?
花了一些时间阅读[docs](http
通过Flink实时构建搜索引擎的索引
1.背景介绍
搜索引擎的出现大大降低了人们寻找信息的难度,已经深入到生活与工作的方方面面,简单列举几个应用如下:
互联网搜索,如谷歌,百度等;
垂直搜索,如淘宝、天猫的商品搜索;
站内搜索,各个内容网站提供的站内搜索服务;
企业内部搜索,员工查询企业内部信息;
广告投放,根据投放上下文检索出对应的广告主和广告内容;
搜索引擎的关键是让用户找到其所需信息,其整体架构如下:
从图示可知,一个搜索引擎从大的方面来看主要包括两部分,一部分是提供在线的搜索服务,一部分要把原始数据已离线的方式建立索引,建立索引是信息可搜索的前提。
专访阿里巴巴林伟:三项世界级挑战背后的思考、实践和经验
今年双11,阿里云大数据平台扛住了巨大的技术挑战,主要体现在实时数据处理技术以及超大规模的离线数据处理两方面,来自阿里巴巴的资深技术专家林伟将为大家介绍双11前中后大数据计算平台对于整个双11的成功提供了哪些不可或缺的支持。
Flink 原理与实现:Window 机制
Flink 认为 Batch 是 Streaming 的一个特例,所以 Flink 底层引擎是一个流式引擎,在上面实现了流处理和批处理。而窗口(window)就是从 Streaming 到 Batch 的一个桥梁。Flink 提供了非常完善的窗口机制,这是我认为的 Flink 最大的亮点之一(其他的亮点包括消息乱序处理,和 checkpoint 机制)。本文我们将介绍流式处理中的窗口概念,介绍 F