机器学习/深度学习

首页 标签 机器学习/深度学习
# 机器学习/深度学习 #
关注
71284内容
阿里云智能语音交互技术实践干货分享
阿里云技术总监/研发总监陈一宁博士通过直播分享了《阿里云智能语音交互技术实践》。他首先介绍了智能语音面临的技术挑战,然后对智能语音技术做了详细介绍。其中,他主要分享了阿里云使用的BLSTM & LFR声学模型的优化过程,并对基于深度学习的自然语言理解的不同场景进行了详细分享。
专访 | 今日头条李磊:程序员如何跻身AI大潮,应用如何落地
李磊博士是今日头条人工智能实验室(Toutiao AI Lab)总监,原百度美国深度学习实验室“少帅科学家”,师从数据挖掘领域权威Christos Faloutsos教授,主要研究领域为深度学习、概率模型与推理、自然语言理解,以及时间序列分析。
Kubeflow Pipeline — 基于Kubernetes 的机器学习工作流
#### 介绍 Pipeline是Kubeflow社区最近开源的一个端到端工作流项目,帮助我们来管理,部署端到端的机器学习工作流。Kubeflow 是一个谷歌的开源项目,它将机器学习的代码像构建应用一样打包,使其他人也能够重复使用。 kubeflow/pipeline 提供了一个工作流方案,将这些机器学习中的应用代码按照流水线的方式编排,形成可重复的工作流。并提供平台,帮助编排,部署,管
深度学习模型训练痛点及解决方法
## 1 模型训练基本步骤 进入了AI领域,学习了手写字识别等几个demo后,就会发现深度学习模型训练是十分关键和有挑战性的。选定了网络结构后,深度学习训练过程基本大同小异,一般分为如下几个步骤 1. 定义算法公式,也就是神经网络的前向算法。我们一般使用现成的网络,如inceptionV4,mobilenet等。 2. 定义loss,选择优化器,来让loss最小 3. 对数据进行迭
免费试用