SLS机器学习最佳实战:根因分析(一)

简介: 通过算法,快速定位到某个宏观异常在微观粒度的具体表现形式,能够更好的帮助运营同学和运维同学分析大量异常,降低问题定位的时间。

为何需要根因分析?

当某个宏观的监控指标发生异常时,如果能快速定位到具体是那个细粒度的指标发生了异常而导致的。具体来说,当某个流量发生了异常,具体如图中所示:
1

这个指标就对应是某个小时级别的流量情况,我们要快速定位到2018-09-02 20:00:00 具体发生了什么问题而导致流量突增的?

如何在平台中分析?

  • 原始数据格式

2

在给定的LogStore中一共存在14天的各个粒度的流量数据,其中涉及的维度为 leaf=(dim1, dim2, dim3, dim4, dim5),在每个时刻,一个leaf节点有一个对应的流量值value,在相同时刻,流量对应有可加性。

  • 异常区间分析

3

我们在图中,绘制某个异常的区间,算法就会去分析从数据:[起始时刻,异常区间的右边界],遍历所有可能,找到导致该异常的集合。
4

在上图中,红色框部分,展示的所找到的候选集合中各个子元素对应的时序图,其中ds表示当前根因集合对应的整体趋势信息,其它为根因集合中对应的各个元素的时序曲线。对图中各个含义进行说明:
5

  • 具体的调用形式(仅仅事例,展示调用形式)
* not Status:200 | 
select rca_kpi_search(
 array[ ProjectName, LogStore, UserAgent, Method ],
 array[ 'ProjectName', 'LogStore', 'UserAgent', 'Method' ], real, forecast, 1) 
from ( 
select ProjectName, LogStore, UserAgent, Method,
 sum(case when time < 1552436040 then real else 0 end) * 1.0 / sum(case when time < 1552436040 
then 1 else 0 end) as forecast,
 sum(case when time >=1552436040 then real else 0 end) *1.0 / sum(case when time >= 1552436040 
then 1 else 0 end) as real
 from ( 
select __time__ - __time__ % 60 as time, ProjectName, LogStore, UserAgent, Method, COUNT(*) as real 
from log GROUP by time, ProjectName, LogStore, UserAgent, Method ) 
GROUP BY ProjectName, LogStore, UserAgent, Method limit 100000000)

使用流程

root_cause.gif


硬广时间

日志进阶

阿里云日志服务针对日志提供了完整的解决方案,以下相关功能是日志进阶的必备良药:

  1. 机器学习语法与函数: https://help.aliyun.com/document_detail/93024.html
  2. 日志上下文查询:https://help.aliyun.com/document_detail/48148.html
  3. 快速查询:https://help.aliyun.com/document_detail/88985.html
  4. 实时分析:https://help.aliyun.com/document_detail/53608.html
  5. 快速分析:https://help.aliyun.com/document_detail/66275.html
  6. 基于日志设置告警:https://help.aliyun.com/document_detail/48162.html
  7. 配置大盘:https://help.aliyun.com/document_detail/69313.html

更多日志进阶内容可以参考:日志服务学习路径


联系我们

纠错或者帮助文档以及最佳实践贡献,请联系:悟冥
问题咨询请加钉钉群:

f5d48178a8f00ad1b8e3fffc73fb9158b3f8fe10_jpeg

相关实践学习
通过日志服务实现云资源OSS的安全审计
本实验介绍如何通过日志服务实现云资源OSS的安全审计。
目录
相关文章
|
9月前
|
存储 运维 监控
SelectDB 实现日志高效存储与实时分析,完成任务可领取积分、餐具套装/水杯/帆布包!
SelectDB 实现日志高效存储与实时分析,完成任务可领取积分、餐具套装/水杯/帆布包!
|
4月前
|
监控 安全 搜索推荐
使用EventLog Analyzer进行日志取证分析
EventLog Analyzer助力企业通过集中采集、归档与分析系统日志及syslog,快速构建“数字犯罪现场”,精准追溯安全事件根源。其强大搜索功能可秒级定位入侵时间、人员与路径,生成合规与取证报表,确保日志安全防篡改,大幅提升调查效率,为执法提供有力证据支持。
189 0
|
7月前
|
机器学习/深度学习 存储 运维
机器学习异常检测实战:用Isolation Forest快速构建无标签异常检测系统
本研究通过实验演示了异常标记如何逐步完善异常检测方案和主要分类模型在欺诈检测中的应用。实验结果表明,Isolation Forest作为一个强大的异常检测模型,无需显式建模正常模式即可有效工作,在处理未见风险事件方面具有显著优势。
584 46
|
9月前
|
SQL 监控 数据挖掘
SLS 重磅升级:超大规模数据实现完全精确分析
SLS 全新推出的「SQL 完全精确」模式,通过“限”与“换”的策略切换,在快速分析与精确计算之间实现平衡,满足用户对于超大数据规模分析结果精确的刚性需求。标志着其在超大规模日志数据分析领域再次迈出了重要的一步。
605 117
|
6月前
|
监控 安全 NoSQL
【DevOps】Logstash详解:高效日志管理与分析工具
Logstash是ELK Stack核心组件之一,具备强大的日志收集、处理与转发能力。它支持多种数据来源,提供灵活的过滤、转换机制,并可通过插件扩展功能,广泛应用于系统日志分析、性能优化及安全合规等领域,是现代日志管理的关键工具。
978 0
|
8月前
|
自然语言处理 监控 安全
阿里云发布可观测MCP!支持自然语言查询和分析多模态日志
阿里云可观测官方发布了Observable MCP Server,提供了一系列访问阿里云可观测各产品的工具能力,包含阿里云日志服务SLS、阿里云应用实时监控服务ARMS等,支持用户通过自然语言形式查询
1134 0
阿里云发布可观测MCP!支持自然语言查询和分析多模态日志
|
7月前
|
人工智能 运维 监控
Aipy实战:分析apache2日志中的网站攻击痕迹
Apache2日志系统灵活且信息全面,但安全分析、实时分析和合规性审计存在较高技术门槛。为降低难度,可借助AI工具如aipy高效分析日志,快速发现攻击痕迹并提供反制措施。通过结合AI与学习技术知识,新手运维人员能更轻松掌握复杂日志分析任务,提升工作效率与技能水平。
|
10月前
|
存储 消息中间件 缓存
MiniMax GenAI 可观测性分析 :基于阿里云 SelectDB 构建 PB 级别日志系统
基于阿里云SelectDB,MiniMax构建了覆盖国内及海外业务的日志可观测中台,总体数据规模超过数PB,日均新增日志写入量达数百TB。系统在P95分位查询场景下的响应时间小于3秒,峰值时刻实现了超过10GB/s的读写吞吐。通过存算分离、高压缩比算法和单副本热缓存等技术手段,MiniMax在优化性能的同时显著降低了建设成本,计算资源用量降低40%,热数据存储用量降低50%,为未来业务的高速发展和技术演进奠定了坚实基础。
455 1
MiniMax GenAI 可观测性分析 :基于阿里云 SelectDB 构建 PB 级别日志系统
|
10月前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
10月前
|
机器学习/深度学习 人工智能 Java
Java机器学习实战:基于DJL框架的手写数字识别全解析
在人工智能蓬勃发展的今天,Python凭借丰富的生态库(如TensorFlow、PyTorch)成为AI开发的首选语言。但Java作为企业级应用的基石,其在生产环境部署、性能优化和工程化方面的优势不容忽视。DJL(Deep Java Library)的出现完美填补了Java在深度学习领域的空白,它提供了一套统一的API,允许开发者无缝对接主流深度学习框架,将AI模型高效部署到Java生态中。本文将通过手写数字识别的完整流程,深入解析DJL框架的核心机制与应用实践。
650 3

相关产品

  • 日志服务