利用OTTER实现准实时ETL、数据同步
利用OTTER实现高效、复杂、实时性高的数据同步场景;数据同步模式涵盖1源表->1目标表、N源表(在/不在同一实例)->1目标表、1源表->N目标表(在/不在同一实例)、自定义同步
【Redis系列笔记】双写一致性
本文讨论了缓存不一致问题及其后果,如价格显示错误和订单计算错误。问题主要源于并发和双写操作的异常。解决方案包括使用分布式锁(但可能导致性能下降和复杂性增加)、延迟双删策略(通过延迟删除缓存来等待数据同步)以及异步同步方法,如通过Canal和MQ实现数据的最终一致性。面试中,可以提及这些策略来确保数据库和缓存数据的一致性。