阿里云机器学习 PAI 年度发布:持续锻造云原生的 AI 工程平台
刚刚结束的 2022 云栖大会上,阿里云机器学习平台 PAI 发布了在开发者服务、企业级能力、工程性能优化三个方向的一系列新特性和功能。从支撑达摩院上云,到服务金融、汽车、互联网、制造等多个行业的创新实践,机器学习 PAI 不断夯实云原生的 AI 工程平台能力。
魔搭语音更新|七大模型最新开源,推理速度升级,几行代码可实现微调
自ModelScope魔搭社区发布以来,众开发者在ModelScope上传与下载模型,并集成到自己的语音识别服务中。为了方便用户更好地利用ModelScope进行语音识别服务,我们推出了语音识别基础框架FunASR,希望在语音识别的学术研究和工业应用之间架起一座桥梁。FunASR已经集成到ModelScope中,提供的工业级的语音识别模型的推理与微调定制,使得研究人员和开发者可以更加便捷的进行语音识别模型的研究和生产,促进语音识别生态的发展。
本次同步迭代发布新版本和升级新功能,可支持用户基于自己的数据进行模型训练和微调,同时发布了语音识别链路上的七大技术模块和模型,来更好地构建面向应用的语音
[OpenVI-视觉生产系列之视频稳像实战篇]再见吧云台,使用AI“魔法”让视频稳定起来
随着自媒体与短视频的兴起,人们有了越来越多的拍摄视频的需求。然而由于手持拍摄、硬件限制等原因,利用手机等普通摄影设备拍摄的视频难免存在视频抖动问题。尤其是开启较高倍数的变焦后,手持拍摄很难拍摄到稳定的视频,极易产生抖动的现象。使用云台、斯坦尼康等外设可以缓解这样的抖动,但是很多时候多带一个外设降低了拍摄视频的便利程度,会使得随时随地的拍摄体验大打折扣。
「达摩院MindOpt」用于多目标规划(加权和法)
多目标规划(Multi-objective programming)是指在一个优化问题中需要同时考虑多个目标函数的优化。在多目标规划问题中,目标函数之间通常是互相冲突的,即在优化一个目标函数的过程中,另一个或几个目标函数可能会受到影响。因此,多目标规划问题的目标是找到一个解x,使得在满足约束的前提下,所有目标函数达到一个相对满意的折中。
解决背包问题:组合优化的应用与建模方法
组合优化是数学优化的一支,专注于从有限集合中选取元素的最优化问题。它涉及将一组对象组合在一起,以满足特定条件并优化某个目标函数,即在所有可能的组合中找到最有利的一个。
本文将以一个简化的背包问题为例,来讲解采用数学规划的方法来解决背包这个组合优化问题。