决策智能

首页 标签 决策智能
# 决策智能 #
关注
2430内容
|
7月前
| |
通义大模型:解码中国AI的"通"与"义"
“通义”取自中国传统文化中“通晓大义”,寓意技术与人文的结合。作为阿里巴巴旗下的超大规模语言模型,通义在知识蒸馏、动态稀疏激活和文化感知模块上实现三大突破,大幅提升效率与适切性。其已在医疗、司法、文化传播等领域落地,如辅助病历处理、法律文书生成及文物解说等。测试显示,通义在中文诗歌创作、商业报告生成等方面表现优异。同时,开放的开发者生态已吸引5万+创新者。未来,通义将探索长期记忆、自我反思及多智能体协作,向AGI迈进,成为智能本质的载体。其对中文语境情感的精准把握,更是中国AI“通情达义”的典范。
史上最全 | BEV感知算法综述(基于图像/Lidar/多模态数据的3D检测与分割任务)
以视觉为中心的俯视图(BEV)感知最近受到了广泛的关注,因其可以自然地呈现自然场景且对融合更友好。随着深度学习的快速发展,许多新颖的方法尝试解决以视觉为中心的BEV感知,但是目前还缺乏对该领域的综述类文章。本文对以视觉为中心的BEV感知及其扩展的方法进行了全面的综述调研,并提供了深入的分析和结果比较,进一步思考未来可能的研究方向。如下图所示,目前的工作可以根据视角变换分为两大类,即基于几何变换和基于网络变换。前者利用相机的物理原理,以可解释性的方式转换视图。后者则使用神经网络将透视图(PV)投影到BEV上。
|
14天前
|
AutoGen框架入门:5个核心概念搭建智能体协作系统
AutoGen是微软开源的多智能体AI框架,支持多个AI智能体与人类协作,通过对话完成复杂任务。各智能体具备不同角色与能力,可调用工具、执行代码,并在群聊中辩论、推理、纠错,实现无需人工干预的自动化协作,适用于复杂问题求解与团队化AI应用开发。
【AI的未来 - AI Agent系列】【MetaGPT】1. AI Agent如何重构世界
【AI的未来 - AI Agent系列】【MetaGPT】1. AI Agent如何重构世界
简介Multi-Agent
多智能体系统(MAS)是由多个自主智能体组成的计算系统,各智能体能独立决策、协同作业,无需中央控制。其特点包括自主性、分布性、交互性、异构性和适应性,广泛应用于人工智能、经济、交通、医疗和环保等领域,展现出巨大潜力。然而,MAS也面临通信开销、一致性、安全性和可扩展性等挑战。
|
25天前
| |
来自: 云原生
分布式 Multi Agent 安全高可用探索与实践
在人工智能加速发展的今天,AI Agent 正在成为推动“人工智能+”战略落地的核心引擎。无论是技术趋势还是政策导向,都预示着一场深刻的变革正在发生。如果你也在探索 Agent 的应用场景,欢迎关注 AgentScope 项目,或尝试使用阿里云 MSE + Higress + Nacos 构建属于你的 AI 原生应用。一起,走进智能体的新世界。
使用 Qwen 生成数据模型和进行结构化输出
本教程展示如何使用CAMEL框架和Qwen模型生成结构化数据。CAMEL是一个强大的多智能体框架,支持复杂的AI任务;Qwen由阿里云开发,具备自然语言处理等先进能力。教程涵盖安装、API密钥设置、定义Pydantic模型,并演示了通过Qwen生成JSON格式的学生信息。最后,介绍了如何利用Qwen生成多个随机学生信息的JSON格式数据。欢迎在[CAMEL GitHub](https://github.com/camel-ai/camel)上为项目点星支持。
深度解析Agent实现,定制自己的Manus
文章结合了理论分析与实践案例,旨在帮助读者系统地认识AI Agent的核心要素、设计模式以及未来发展方向。
|
2天前
| |
来自: 云原生
Apache RocketMQ × AI:面向 Multi-Agent 的事件驱动架构
本文介绍基于Apache RocketMQ构建异步化Multi-Agent系统的新架构,通过语义化Topic实现Agent能力发现,利用Lite-Topic支持轻量级异步通信与结果反馈,结合InterestSet+ReadySet事件驱动模型,高效支撑任务闭环、状态恢复与动态编排,为Agentic AI提供高扩展、低延迟的协同机制。
免费试用