决策智能

首页 标签 决策智能
# 决策智能 #
关注
2468内容
|
5月前
|
CrewAI与LangGraph:下一代智能体编排平台深度测评
在过去的一年里,我深度研究了多种智能体编排平台的技术演进,见证了从单一智能体应用向多智能体协作系统的转变。随着大语言模型能力的不断提升,**智能体编排(Agent Orchestration)**已成为构建复杂AI系统的核心技术。在众多新兴框架中,CrewAI以其直观的团队协作模式和LangGraph以其强大的状态图编排能力,代表了两种截然不同的技术路径。 CrewAI采用**代码优先(Code-First)的编排方式,将智能体建模为具有特定角色和目标的团队成员;而LangGraph则提供可视化编排(Visual Orchestration)**能力,通过状态图来管理复杂的工作流程。这两种平台
swarm Agent框架入门指南:构建与编排多智能体系统的利器 | AI应用开发
Swarm是OpenAI在2024年10月12日宣布开源的一个实验性质的多智能体编排框架。其核心目标是让智能体之间的协调和执行变得更轻量级、更容易控制和测试。Swarm框架的主要特性包括轻量化、易于使用和高度可定制性,非常适合处理大量独立的功能和指令。【10月更文挑战第15天】
【AI Agent系列】【阿里AgentScope框架】实战1:利用AgentScope实现动态创建Agent和自由组织讨论
【AI Agent系列】【阿里AgentScope框架】实战1:利用AgentScope实现动态创建Agent和自由组织讨论
基于agentscope的多智能体游戏场景-骗子酒馆
骗子酒馆是一款基于多智能体系统的在线社交推理游戏,玩家通过掷骰子和扑克牌进行智力和心理博弈,结合大语言模型技术,每个游戏角色由AI扮演,具备独特的性格和决策逻辑,提供高度沉浸式的体验。游戏采用黑板通信模式,确保信息高效交换,支持多种角色如胆小鬼、占卜师等,每个角色拥有特定的技能和行为模式,增强游戏的策略深度和互动性。游戏界面简洁,操作流畅,适合喜欢心理战和策略游戏的玩家。文章末尾有源码和体验地址。
一文尽览 | 轨迹预测二十年发展全面回顾!(基于物理/机器学习/深度学习/强化学习)(上)
为了在动态环境中安全驾驶,自动驾驶车辆应该能够预测附近交通参与者的未来状态,尤其是周围车辆,类似于人类驾驶员的预测驾驶能力。这就是为什么研究人员致力于轨迹预测领域并提出不同的方法。本文旨在对过去二十年中提出的自动驾驶轨迹预测方法进行全面和比较性的回顾!!!它从问题公式和算法分类开始。然后,详细介绍和分析了基于物理、经典机器学习、深度学习和强化学习的流行方法。最后,论文评估了每种方法的性能,并概述了潜在的研究方向。
数学建模常用算法:启发式优化算法合辑(内含多种智能优化算法,使用java实现算法、详细注释、并进行结果可视化)
数学建模常用算法:启发式优化算法合辑(内含多种智能优化算法,使用java实现算法、详细注释、并进行结果可视化)
数字化与数智化的区别
数字化是将信息转化为数字格式的过程,侧重于数据的转换和流程优化,而数智化是在此基础上结合智能技术进行深入分析和决策,强调智能应用。两者都是数据驱动的,但数智化更注重智能决策和业务创新。从数字化到数智化,企业需克服战略、组织和技术的挑战,实现体制、资源、机制和能力的全面转型。低代码平台等工具可助力企业加速数字化进程。
免费试用