决策智能

首页 标签 决策智能
# 决策智能 #
关注
2427内容
|
6月前
|
MCP、A2A、ACP、ANP、.... :AI智能体协议的演进展望
多家机构各自推出的MCP、A2A、ACP、ANP等AI智能体协议将会彼此竞争、互补还是趋同?前景有多种可能
|
2月前
|
AI智能体开发实战:17种核心架构模式详解与Python代码实现
本文系统解析17种智能体架构设计模式,涵盖多智能体协作、思维树、反思优化与工具调用等核心范式,结合LangChain与LangGraph实现代码工作流,并通过真实案例验证效果,助力构建高效AI系统。
一文梳理我们是如何打造出国内领先的 AI 编程助手「通义灵码」
大语言模型的革命性突破使智能编程成为了可能,通义灵码正是基于通义大模型打造的 AI 编程助手,通过 IDE 插件的形式提供代码补全、单元测试生成等功能,能达到毫秒级的响应速度。目前,通义灵码已在阿里云内部及多家企业中应用,阿里云也在探索多智能体产品,即 AI 程序员,助力数字世界的蓬勃发展,颠覆 IT 生产力。
万字干货|复杂表格多Agent方案:从LLM洞察、系统性 思考到实践经验总结
笔者结合实践经验以近期在负责的复杂表格智能问答为切入点,结合大模型的哲学三问(“是谁、从哪里来、到哪里去”),穿插阐述自己对大模型的一些理解与判断,以及面向公共云LLM的建设模式思考,并分享软件设计+模型算法结合的一些研发实践经验。
手把手带你入门AI智能体:从核心概念到第一个能跑的Agent
AI智能体是一种能感知环境、自主决策并执行任务的人工智能系统。它不仅能生成回应,还可通过工具使用、计划制定和记忆管理完成复杂工作,如自动化测试、脚本编写、缺陷分析等。核心包括大语言模型(LLM)、任务规划、工具调用和记忆系统。通过实践可逐步构建高效智能体,提升软件测试效率与质量。
|
10天前
| |
来自: 云原生
2025 OSCAR丨与创新者同频!Apache RocketMQ 邀您共赴开源之约
10 月 28 日,阿里云高级技术专家周礼分享如何基于 Apache RocketMQ 新特性构建异步化 Multi-Agent 系统。
基于深度学习下的QSAR如何助力医药研发?
QSAR研究是人类最早的合理药物设计方法之一,具有计算量小,预测能力好等优点。在受体结构未知的情况下,定量构效关系方法是最准确和有效地进行药物设计的方法,根据QSAR计算结果的指导药物化学家可以更有目的性地对生理活性物质进行结构改造。
免费试用