构建AI智能体:八十七、KM与Chinchilla法则:AI模型发展的两种训练法则完全解析
摘要: 大模型训练中,如何在有限计算预算(C≈6ND)下最优分配模型参数量(N)与训练数据量(D)是关键挑战。KM扩展法则主张“模型优先”,认为增大N的收益高于D(α=0.076<β=0.103),推荐N∝C^0.73、D∝C^0.27。Chinchilla法则则通过实验发现大模型普遍训练不足,提出平衡策略(α=β≈0.38),推荐N∝D∝C^0.5,即在相同预算下减小模型规模并大幅增加数据量,可提升性能。
一个尚在公测的产品,凭什么能登顶AI排行第一名
OiiOii内测即登顶AIWW动画生成榜首,揭示AI应用竞争逻辑之变:从流量堆砌转向价值共鸣。市场正由“技术参数”比拼,迈向“可感知价值”的终极战场——真实需求、清晰定位与体验差异成关键。此非流量奇迹,而是行业向产品本质回归的信号。
构建AI智能体:八十六、大模型的指令微调与人类对齐:从知识渊博到善解人意
本文探讨了大模型从知识储备到实用助手的进化过程。首先分析了原始预训练模型存在的问题:擅长文本补全但缺乏指令理解能力,可能生成有害或无关内容。然后详细介绍了指令微调技术,通过高质量(指令-输出)数据集教会模型理解并执行翻译、总结、情感分析等任务。进一步阐述了人类对齐技术,包括基于人类反馈的强化学习(RLHF)的三个关键步骤,使模型输出不仅符合指令,更符合人类价值观。最后展示了Qwen模型微调实践,包括代码实现和效果对比。整个过程将AI从知识库转变为既强大又安全可靠的智能助手。
大模型微调技术入门:从核心概念到实战落地全攻略
本课程系统讲解大模型微调核心技术,涵盖全量微调与高效微调(LoRA/QLoRA)原理、优劣对比及适用场景,深入解析对话定制、领域知识注入、复杂推理等四大应用,并介绍Unsloth、LLaMA-Factory等主流工具与EvalScope评估框架,助力从入门到实战落地。
2026新规 | AI聊天机器人上线需要办理什么资质?
AIGC浪潮下,AI聊天机器人爆发式增长,2025年上半年中国相关企业注册超5万家。随着《人工智能拟人化互动服务管理暂行办法》发布,合规成关键。本文详解上线必备资质:ICP备案、算法与大模型双备案、特殊行业许可及拟人化服务新规,构建“四层合规体系”,助企业规避风险,实现可持续发展。