数据管理

首页 标签 数据管理
# 数据管理 #
关注
5901内容
数字化教育系统管理平台:为教务部门量身定制的可视化大屏
在教育行业数字化转型背景下,教务部门面临管理效率低下、数据分散、决策支持不足等挑战。为此,我们推出数字化教育系统可视化大屏,整合招生和学务数据,提供直观的实时分析与可视化展示,助力高效管理和科学决策。平台支持红色(招生)和绿色(学务)主题,涵盖高校数据管理、信息一览、定制化地图展示等应用场景,显著提升数据处理效率和用户体验。
媒体声音|专访阿里云数据库周文超博士:AI就绪的智能数据平台设计思路
在生成式AI的浪潮中,数据的重要性日益凸显。大模型在实际业务场景的落地过程中,必须有海量数据的支撑:经过训练、推理和分析等一系列复杂的数据处理过程,才能最终产生业务价值。事实上,大模型本身就是数据处理后的产物,以数据驱动的决策与创新需要通过更智能的平台解决数据多模处理、实时分析等问题,这正是以阿里云为代表的企业推动 “Data+AI”融合战略的核心动因。
|
5天前
|
时序数据库TDengine 与中移软件达成兼容性互认证,推动虚拟化云平台与时序数据库的深度融合
在数字化转型和智能化升级的浪潮下,企业对数据的需求日益增长,尤其是在物联网、大数据和实时分析等领域。随着设备数量的激增,时序数据的管理和处理变得愈发复杂,企业亟需高效、稳定的数据解决方案来应对这一挑战。时序数据库作为专门处理时间序列数据的工具,正逐渐成为各行业数字化转型的重要支撑。
数据+AI融合趋势洞察暨阿里云OpenLake解决方案发布
Forrester是全球领先的市场研究与咨询机构,专注于新兴技术在各领域的应用。本文探讨如何加速现代数据管理,推动人工智能与客户业务的融合创新。面对数据标准缺乏、多云环境复杂性、新兴业务场景及过多数据平台等挑战,Forrester提出构建AI就绪的数据管理基石,通过互联智能框架、全局数据管理和DataOps、端到端数据管理能力、AI赋能的数据管理以及用例驱动的策略,帮助企业实现数据和AI的深度融合,提升业务价值并降低管理成本。
从数据存储到分析:构建高效开源数据湖仓解决方案
今年开源大数据迈向湖仓一体(Lake House)时代,重点介绍Open Lake解决方案。该方案基于云原生架构,兼容开源生态,提供开箱即用的数据湖仓产品。其核心优势在于统一数据管理和存储,支持实时与批处理分析,打破多计算产品的数据壁垒。通过阿里云的Data Lake Formation和Apache Paimon等技术,用户可高效搭建、管理并分析大规模数据,实现BI和AI融合,满足多样化数据分析需求。
|
7天前
|
《探索人工智能产业的可持续发展模式与策略》
在科技浪潮中,人工智能产业正成为经济增长和社会进步的关键力量。要实现其可持续发展,需从技术创新、产业协同、人才培养、数据管理等多方面入手。技术创新驱动性能提升,如深度学习突破图像和语音识别;产业协同推动智能制造、智能医疗等领域升级;高校与企业共同培养专业人才;数据管理和政策支持保障产业发展;国际合作与环保理念助力绿色AI技术发展。通过综合策略,推动人工智能健康、可持续发展。
|
8天前
|
“点数成金”时代,如何应用全域数据资产治理释放企业数据价值?【瓴羊Dataphin在信通院2024数据资产管理大会】
在“点数成金”时代,企业数据成为宝贵资产。12月18-19日,信通院“2024数据资产管理大会”在京举办,瓴羊政企金融事业部总监徐宁分享了Dataphin在数据治理领域的创新方法论与实践经验,强调数据资产双循环和元数据管理的重要性。瓴羊副总裁王赛获颁数据资产管理专家证书。
|
8天前
|
央国企“严选”的瓴羊,如何让数据“供得出、流得动、用得好”?|【瓴羊Dataphin在信通院2024数据资产管理大会】
在产业变革新浪潮下,数据资产管理步入“繁花时代”,瓴羊高级解决方案专家黄彦之出席2024数据资产管理大会并分享了瓴羊基于12年阿里最佳数据实践,通过Dataphin等产品助力央国企数智化转型的路径与方法。大会发布《数据治理产业图谱3.0》,瓴羊Dataphin入选BUCM板块代表产品,彰显其领先经验。
|
9天前
|
《人工智能如何加速药物研发进程:从新药发现到临床试验的突破》
在医药领域,药物研发复杂且成本高昂,新药推出面临诸多挑战。人工智能(AI)通过分析海量生物数据,加速靶点识别、药物分子设计及临床试验设计与数据分析,显著提升研发效率和质量。AI利用机器学习算法和大数据分析,优化试验方案,预测药物疗效与安全性,助力智能化药物研发平台的建设。尽管存在数据质量和隐私等挑战,AI仍为药物研发带来巨大潜力与创新机遇。
StarRocks元数据无法合并
StarRocks版本在3.1.4及以下,并且使用了metadata_journal_skip_bad_journal_ids来跳过某个异常的journal,会导致FE元数据无法合并。
免费试用