PyTorch FlexAttention技术实践:基于BlockMask实现因果注意力与变长序列处理

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,1000CU*H 3个月
简介: 本文介绍了如何使用PyTorch 2.5及以上版本中的FlexAttention和BlockMask功能,实现因果注意力机制与填充输入的处理。通过attention-gym仓库安装相关工具,并详细展示了MultiheadFlexAttention类的实现,包括前向传播函数、因果掩码和填充掩码的生成方法。实验设置部分演示了如何组合这两种掩码并应用于多头注意力模块,最终通过可视化工具验证了实现的正确性。该方法适用于处理变长序列和屏蔽未来信息的任务。

本文介绍了如何利用torch 2.5及以上版本中新引入的FlexAttention和BlockMask功能来实现因果注意力机制与填充输入的处理。

鉴于目前网络上缺乏关于FlexAttention处理填充输入序列的完整代码示例和技术讨论,本文将详细阐述一种实现方法,该方法同时涵盖了因果注意力机制的实现。

本文不会详细讨论FlexAttention的理论基础,如需了解更多技术细节,建议参考PyTorch官方博客。

环境配置

 git clone https://github.com/pytorch-labs/attention-gym.git  
 cd attention-gym  
 pip install .  
 cd ../

我们通过attention-gym仓库进行安装,这样可以确保组件间的兼容性,同时获取其可视化工具的使用权限。

MultiheadFlexAttention实现

为了在transformer架构中有效地使用flex_attention,需要在多头注意力模块中进行实现。

     class MultiheadFlexAttention(nn.Module):  
         def __init__(self, d_in, d_out, n_heads, bias=False):  
             """  
             描述:实现基于flex_attention的多头自注意力机制的PyTorch模块
             参数:
                 d_in: int, 输入张量维度
                 d_out: int, 输出张量维度
                 n_heads: int, 注意力头数
                 bias: bool, 是否在query、key和value计算中使用偏置项
             """  
             super().__init__()  
             assert d_out % n_heads == 0, "d_out must be divisible by n_heads"  

             self.n_heads = n_heads  
             self.d_head = d_out // n_heads  
             self.d_out = d_out  

             self.in_proj = nn.Linear(d_in, 3 * d_out, bias=bias)  
             self.out_proj = nn.Linear(d_out, d_out)

此处定义了模型的核心参数,包括输入输出维度及线性变换层。

 def forward(self, x, block_mask):  
             """  
             描述:多头自注意力模块的前向计算过程
             参数:
                 x: torch.Tensor, 输入张量,维度为(batch_size, max_seq_len, d_in)
                 block_mask: torch.Tensor, flex_attention使用的块状掩码
             """  
             batch_size, max_seq_len, d_in = x.shape  


             # 通过线性变换生成query、key、value的组合表示
             qkv = self.in_proj(x)  

             # 将qkv分解并重组为多头形式
             qkv = qkv.view(batch_size, max_seq_len, 3, self.n_heads, self.d_head)  

             # 调整张量维度以适配flex_attention的输入要求
             qkv = qkv.permute(2, 0, 3, 1, 4)  

             # 解析得到query、key、value张量
             queries, keys, values = qkv   

             # 利用flex_attention计算注意力权重
             attn = flex_attention(queries, keys, values, block_mask=block_mask)  

             # 合并多头注意力的输出
             attn = attn.transpose(1, 2).contiguous().view(batch_size, max_seq_len, self.d_out)  

             # 执行输出映射
             attn = self.out_proj(attn)  

             return attn, queries, keys

该前向传播函数的实现与PyTorch标准的MultiheadAttention类相似,主要区别在于引入了block_mask参数并采用flex_attention函数进行注意力计算。

mask_mod函数实现

FlexAttention的核心优势在于能够高效地实现和使用自定义注意力掩码,而无需编写特定的CUDA核心代码。

要使用此功能,需要将掩码定义为布尔类型张量。首先实现一个因果掩码,这是FlexAttention开发者在其官方博客中提供的基础示例。

因果掩码

 def causal(b, h, q_idx, kv_idx):  
     return q_idx >= kv_idx

这里的参数说明:

  • b:批次大小
  • h:注意力头数
  • q_idx:query位置索引
  • kv_idx:key/value位置索引

例如,对于序列长度为

5

的输入,

q_idx

表示为

torch.Tensor([0,1,2,3,4])

q_idx >= kv_idx

返回一个因果布尔掩码,确保注意力计算只考虑当前位置及其之前的token。

接下来将实现填充掩码来处理变长序列的填充部分。

填充掩码实现

填充掩码与因果掩码的主要区别在于其批次依赖性,即掩码值取决于每个序列中填充token的具体位置。实现时需要通过填充标记表来识别序列中应被忽略的填充token。

 def create_padding_mask(pads):  
     def padding(b, h, q_idx, kv_idx):  
         return ~pads[b, q_idx] & ~pads[b, kv_idx]  
     return padding
pads

是一个形状为

(batch_size, max_seq_len)

的布尔张量,填充位置标记为True,有效token位置标记为False。此

padding

mask_mod函数生成填充掩码,仅当query和key/value位置均为非填充token时才允许注意力计算。

实验设置与数据准备

在组合掩码并应用到MultiheadFlexAttention之前,需要先设置相关参数并准备实验数据。

 # 多头注意力参数配置
 d_in = 64  
 d_out = 64  
 n_heads = 8  

 # 初始化多头注意力模块
 mhfa = MultiheadFlexAttention(d_in, d_out, n_heads).to(device)  

 # 数据维度设置
 batch_size = 1 # 支持任意批次大小
 max_seq_len = 10  

 # 生成随机输入数据
 input_data = torch.randn(batch_size, max_seq_len, d_in).to(device)

接下来,对

input_data

进行修改,添加随机的末尾零填充。

 # 添加随机零填充
 pad = torch.zeros(1, d_in).to(device)  
 pad_idxs = [(b, range(torch.randint(max_seq_len//2, max_seq_len + 1, (1,)).item(), max_seq_len)) for b in range(batch_size)]  
 for b, idxs in pad_idxs:  
     input_data[b, idxs] = pad

现在需要为

padding

mask_mod函数构建填充标记表。

 # 构建填充标记掩码
 collapsed_input = input_data[:, :, 0] # (batch_size, max_seq_len)  
 pads = torch.eq(collapsed_input, 0).to(device)

注意,mask_mod函数不需要考虑

input_data

的嵌入维度,因此在创建填充标记表(

pads

)时可以将该维度压缩。

组合因果掩码和填充掩码

此时我们已具备创建综合注意力掩码所需的全部组件。

 # 构建组合掩码
 causal_mask = causal  
 padding_mask = create_padding_mask(pads)  
 masks = [causal, padding_mask]  
 combined_mask = and_masks(*masks)  
 causal_padding_mask = create_block_mask(combined_mask, B=batch_size, H=None, Q_LEN=max_seq_len, KV_LEN=max_seq_len, _compile=True)

在这里,我们通过torch.flex_attention提供的

and_masks

函数将

causal

padding

mask_mod函数进行组合,从而生成统一的BlockMask。

说明:开发团队建议启用

_compile_

参数可显著提升BlockMasks的生成效率,这对于批次相关的掩码处理尤其重要。

现在可以利用MultiheadFlexAttention类对

input_data

执行注意力计算,同时应用编译后的自定义注意力掩码。

 # 执行前向计算
 attn_output, query, key = mhfa(input_data, causal_padding_mask)

使用attention-gym提供的可视化工具来分析注意力分布。

 # 可视化第一个序列的注意力分布
 visualize_attention_scores(  
     query,  
     key,  
     mask_mod=combined_mask,  
     device=device,  
     name="causal_padding_mask",  
     path=Path("./causal_padding_mask.png"),  
 )

上图展示了包含三个填充token的序列的掩码后因果注意力分布。

从可视化结果可以观察到,填充token和未来token的注意力权重都被有效地屏蔽,验证了实现的正确性。

https://avoid.overfit.cn/post/96d77c0f872c43dd8c752b687af7babf

作者:Lucas Gomez

目录
相关文章
|
4月前
|
机器学习/深度学习 PyTorch API
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
本文深入探讨神经网络模型量化技术,重点讲解训练后量化(PTQ)与量化感知训练(QAT)两种主流方法。PTQ通过校准数据集确定量化参数,快速实现模型压缩,但精度损失较大;QAT在训练中引入伪量化操作,使模型适应低精度环境,显著提升量化后性能。文章结合PyTorch实现细节,介绍Eager模式、FX图模式及PyTorch 2导出量化等工具,并分享大语言模型Int4/Int8混合精度实践。最后总结量化最佳策略,包括逐通道量化、混合精度设置及目标硬件适配,助力高效部署深度学习模型。
648 21
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
|
5月前
|
机器学习/深度学习 存储 缓存
加速LLM大模型推理,KV缓存技术详解与PyTorch实现
大型语言模型(LLM)的推理效率是AI领域的重要挑战。本文聚焦KV缓存技术,通过存储复用注意力机制中的Key和Value张量,减少冗余计算,显著提升推理效率。文章从理论到实践,详细解析KV缓存原理、实现与性能优势,并提供PyTorch代码示例。实验表明,该技术在长序列生成中可将推理时间降低近60%,为大模型优化提供了有效方案。
940 15
加速LLM大模型推理,KV缓存技术详解与PyTorch实现
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现
本文将深入探讨L1、L2和ElasticNet正则化技术,重点关注其在PyTorch框架中的具体实现。关于这些技术的理论基础,建议读者参考相关理论文献以获得更深入的理解。
105 4
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现
|
4月前
|
机器学习/深度学习 算法 PyTorch
Perforated Backpropagation:神经网络优化的创新技术及PyTorch使用指南
深度学习近年来在多个领域取得了显著进展,但其核心组件——人工神经元和反向传播算法自提出以来鲜有根本性突破。穿孔反向传播(Perforated Backpropagation)技术通过引入“树突”机制,模仿生物神经元的计算能力,实现了对传统神经元的增强。该技术利用基于协方差的损失函数训练树突节点,使其能够识别神经元分类中的异常模式,从而提升整体网络性能。实验表明,该方法不仅可提高模型精度(如BERT模型准确率提升3%-17%),还能实现高效模型压缩(参数减少44%而无性能损失)。这一革新为深度学习的基础构建模块带来了新的可能性,尤其适用于边缘设备和大规模模型优化场景。
154 16
Perforated Backpropagation:神经网络优化的创新技术及PyTorch使用指南
|
5月前
|
机器学习/深度学习 编解码 PyTorch
从零实现基于扩散模型的文本到视频生成系统:技术详解与Pytorch代码实现
本文介绍了一种基于扩散模型的文本到视频生成系统,详细展示了模型架构、训练流程及生成效果。通过3D U-Net结构和多头注意力机制,模型能够根据文本提示生成高质量视频。
209 1
从零实现基于扩散模型的文本到视频生成系统:技术详解与Pytorch代码实现
|
11月前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
765 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
|
10月前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
259 7
|
11月前
|
机器学习/深度学习 PyTorch 算法框架/工具
聊一聊计算机视觉中常用的注意力机制以及Pytorch代码实现
本文介绍了几种常用的计算机视觉注意力机制及其PyTorch实现,包括SENet、CBAM、BAM、ECA-Net、SA-Net、Polarized Self-Attention、Spatial Group-wise Enhance和Coordinate Attention等,每种方法都附有详细的网络结构说明和实验结果分析。通过这些注意力机制的应用,可以有效提升模型在目标检测任务上的性能。此外,作者还提供了实验数据集的基本情况及baseline模型的选择与实验结果,方便读者理解和复现。
811 0
聊一聊计算机视觉中常用的注意力机制以及Pytorch代码实现
|
11月前
|
机器学习/深度学习 算法 数据可视化
如果你的PyTorch优化器效果欠佳,试试这4种深度学习中的高级优化技术吧
在深度学习领域,优化器的选择对模型性能至关重要。尽管PyTorch中的标准优化器如SGD、Adam和AdamW被广泛应用,但在某些复杂优化问题中,这些方法未必是最优选择。本文介绍了四种高级优化技术:序列最小二乘规划(SLSQP)、粒子群优化(PSO)、协方差矩阵自适应进化策略(CMA-ES)和模拟退火(SA)。这些方法具备无梯度优化、仅需前向传播及全局优化能力等优点,尤其适合非可微操作和参数数量较少的情况。通过实验对比发现,对于特定问题,非传统优化方法可能比标准梯度下降算法表现更好。文章详细描述了这些优化技术的实现过程及结果分析,并提出了未来的研究方向。
302 1
|
10天前
|
机器学习/深度学习 数据采集 人工智能
PyTorch学习实战:AI从数学基础到模型优化全流程精解
本文系统讲解人工智能、机器学习与深度学习的层级关系,涵盖PyTorch环境配置、张量操作、数据预处理、神经网络基础及模型训练全流程,结合数学原理与代码实践,深入浅出地介绍激活函数、反向传播等核心概念,助力快速入门深度学习。
57 1

推荐镜像

更多