基于Python深度学习果蔬识别系统实现

简介: 本项目基于Python和TensorFlow,使用ResNet卷积神经网络模型,对12种常见果蔬(如土豆、苹果等)的图像数据集进行训练,构建了一个高精度的果蔬识别系统。系统通过Django框架搭建Web端可视化界面,用户可上传图片并自动识别果蔬种类。该项目旨在提高农业生产效率,广泛应用于食品安全、智能农业等领域。CNN凭借其强大的特征提取能力,在图像分类任务中表现出色,为实现高效的自动化果蔬识别提供了技术支持。

一、简介

果蔬识别系统,主要开发语言为Python,基于TensorFlow搭建ResNet卷积神经网络算法模型,通过对12种常见的果蔬('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜')图像数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django框架搭建Web网页端可视化操作界面,以下为项目实现介绍。

二、选题目的

随着人工智能技术的飞速发展,计算机视觉在许多领域中得到了广泛应用,尤其是在图像识别方面。图像分类技术作为计算机视觉的重要研究方向,近年来取得了显著进展。卷积神经网络(Convolutional Neural Networks, CNN)作为深度学习的一种有效模型,已广泛应用于图像处理任务,包括图像分类、物体检测、面部识别等领域。特别是在图像分类任务中,CNN凭借其良好的特征提取能力和高效的训练过程,成为解决实际问题的首选方法。

在此背景下,本课题《基于Python下深度学习的的果蔬识别系统的设计与实现》应运而生。果蔬识别作为农业科技中的一个重要应用领域,不仅有助于提高农业生产效率,还可以广泛应用于食品安全、智能农业、自动化分拣等场景。传统的果蔬识别方法主要依赖人工检测或者简单的图像处理技术,效率低且准确性不足。因此,基于深度学习的自动化果蔬识别技术具有巨大的应用潜力。

本课题的主要目的是设计并实现一个基于卷积神经网络的果蔬识别系统,通过训练深度学习模型,使系统能够自动识别不同类型的果蔬。具体而言,本系统将利用收集到的12种常见果蔬的图片数据集,构建并训练一个卷积神经网络模型,最终实现较高的识别准确率。通过该系统,用户可以通过上传果蔬图片,系统将自动识别出图片中的果蔬种类,并返回结果。

选择卷积神经网络作为模型框架是因为CNN在图像分类任务中表现出色,能够有效提取图像的局部特征并进行学习。本系统将利用TensorFlow深度学习框架进行模型的构建与训练,该框架拥有丰富的工具和优化算法,能够帮助我们快速搭建和优化深度学习模型。数据集方面,系统将收集12种常见的果蔬图片数据,包括土豆、圣女果、大白菜、大葱、梨、胡萝卜、芒果、苹果、西红柿、韭菜、香蕉、黄瓜等。这些数据将用于训练卷积神经网络模型,并通过反向传播算法不断优化模型的参数。

三、环境配置

  • Python解释器
  • Pycharm
  • TensorFlow等依赖包

四、算法搭建与训练

python

代码解读

复制代码

model = keras.applications.ResNet50(weights='imagenet', include_top=False, input_shape=(img_width,img_height,3))

keras.applications.ResNet50

  • 这里使用的是 Keras 提供的一个高层API中的 ResNet50 模型。
  • ResNet50 是一个深度卷积神经网络(CNN),由50层构成,广泛用于图像分类任务。它基于残差学习的概念,能够有效地训练非常深的网络。
  • Keras的 applications 模块提供了许多预训练的深度学习模型,包括 ResNet50、VGG16、Inception等,用户可以直接加载这些模型用于迁移学习。

然后通过model.summary()打印模型结构如下:

在完成模型搭建后,准备开始训练模型,在本项目中,指定了20轮迭代训练,其训练过程输出信息如下:

powershell

代码解读

复制代码

Epoch 1/20
62/62 [==============================] - 13s 88ms/step - loss: 1.4565 - accuracy: 0.6870 - val_loss: 2.5458 - val_accuracy: 0.0854
Epoch 2/20
62/62 [==============================] - 4s 63ms/step - loss: 1.0147 - accuracy: 0.9482 - val_loss: 2.4804 - val_accuracy: 0.1260
Epoch 3/20
62/62 [==============================] - 4s 62ms/step - loss: 0.8887 - accuracy: 0.9817 - val_loss: 2.4915 - val_accuracy: 0.0610
Epoch 4/20
62/62 [==============================] - 4s 66ms/step - loss: 0.8212 - accuracy: 0.9919 - val_loss: 2.4764 - val_accuracy: 0.0935
Epoch 5/20
62/62 [==============================] - 4s 63ms/step - loss: 0.7761 - accuracy: 0.9919 - val_loss: 2.4558 - val_accuracy: 0.0976
Epoch 6/20
62/62 [==============================] - 4s 64ms/step - loss: 0.7408 - accuracy: 0.9949 - val_loss: 2.3973 - val_accuracy: 0.1585
Epoch 7/20
62/62 [==============================] - 4s 62ms/step - loss: 0.7103 - accuracy: 0.9959 - val_loss: 2.2823 - val_accuracy: 0.2886
Epoch 8/20
62/62 [==============================] - 4s 62ms/step - loss: 0.6822 - accuracy: 0.9949 - val_loss: 2.1412 - val_accuracy: 0.4065
Epoch 9/20
62/62 [==============================] - 4s 63ms/step - loss: 0.6569 - accuracy: 0.9970 - val_loss: 1.9389 - val_accuracy: 0.5447
Epoch 10/20
62/62 [==============================] - 4s 63ms/step - loss: 0.6301 - accuracy: 0.9959 - val_loss: 1.7184 - val_accuracy: 0.6789
Epoch 11/20
62/62 [==============================] - 4s 63ms/step - loss: 0.6051 - accuracy: 0.9980 - val_loss: 1.5291 - val_accuracy: 0.7642
Epoch 12/20
62/62 [==============================] - 4s 64ms/step - loss: 0.5793 - accuracy: 0.9959 - val_loss: 1.2364 - val_accuracy: 0.8577
Epoch 13/20
62/62 [==============================] - 4s 63ms/step - loss: 0.5535 - accuracy: 0.9980 - val_loss: 1.0483 - val_accuracy: 0.9065
Epoch 14/20
62/62 [==============================] - 4s 63ms/step - loss: 0.5300 - accuracy: 0.9980 - val_loss: 0.9035 - val_accuracy: 0.9228
Epoch 15/20
62/62 [==============================] - 4s 62ms/step - loss: 0.5072 - accuracy: 0.9980 - val_loss: 0.7945 - val_accuracy: 0.9390
Epoch 16/20
62/62 [==============================] - 4s 62ms/step - loss: 0.4857 - accuracy: 0.9980 - val_loss: 0.7137 - val_accuracy: 0.9268
Epoch 17/20
62/62 [==============================] - 4s 64ms/step - loss: 0.4654 - accuracy: 0.9980 - val_loss: 0.6685 - val_accuracy: 0.9431
Epoch 18/20
62/62 [==============================] - 4s 63ms/step - loss: 0.4459 - accuracy: 0.9980 - val_loss: 0.6325 - val_accuracy: 0.9472
Epoch 19/20
62/62 [==============================] - 4s 63ms/step - loss: 0.4284 - accuracy: 0.9980 - val_loss: 0.6004 - val_accuracy: 0.9553
Epoch 20/20
62/62 [==============================] - 4s 62ms/step - loss: 0.4102 - accuracy: 0.9990 - val_loss: 0.5743 - val_accuracy: 0.9431

如上所示,从提供的训练输出信息中可以看到模型在训练过程中的变化趋势。每个epoch(轮次)的输出包含以下几个重要信息:训练损失(loss)训练准确率(accuracy)验证损失(val_loss),和验证准确率(val_accuracy)

  1. 训练损失(loss)和训练准确率(accuracy):

训练损失逐渐下降,从 1.4565 减少到 0.4102,这表明模型在不断优化,学会了如何更好地拟合训练数据。

训练准确率逐渐提高,从 68.70% 提高到 99.90%,显示出模型的性能正在不断提升,已经接近完美地拟合训练集。

  1. 验证损失(val_loss)和验证准确率(val_accuracy)

验证损失(val_loss)虽然在前几轮(比如第一轮的 2.5458)较高,但随着训练的进行,逐渐下降(最终为 0.5743)。这意味着模型在验证集上的表现也在不断提高,过拟合的情况得到了控制。

验证准确率(val_accuracy)同样在逐步提升,从 8.54% 开始,到 94.31% 结束,表明模型在验证集上的预测准确率持续增长。

下面是ACC曲线图和LOSS曲线图

四、Web可视化操作界面搭建

前端基于HTML,CSS,BootStrap等技术搭建前端界面。后端基于Django处理用户请求。其效果如下图所示。


转载来源:https://juejin.cn/post/7444455886149877812

相关文章
|
3月前
|
机器学习/深度学习 监控 算法
基于mediapipe深度学习的手势数字识别系统python源码
本内容涵盖手势识别算法的相关资料,包括:1. 算法运行效果预览(无水印完整程序);2. 软件版本与配置环境说明,提供Python运行环境安装步骤;3. 部分核心代码,完整版含中文注释及操作视频;4. 算法理论概述,详解Mediapipe框架在手势识别中的应用。Mediapipe采用模块化设计,包含Calculator Graph、Packet和Subgraph等核心组件,支持实时处理任务,广泛应用于虚拟现实、智能监控等领域。
|
1月前
|
安全 JavaScript Java
Python中None与NoneType的真相:从单例对象到类型系统的深度解析
本文通过10个真实场景,深入解析Python中表示“空值”的None与NoneType。从单例模式、函数返回值,到类型注解、性能优化,全面揭示None在语言设计与实际编程中的核心作用,帮助开发者正确高效地处理“无值”状态,写出更健壮、清晰的Python代码。
134 3
|
2月前
|
机器学习/深度学习 存储 监控
基于深度学习YOLO框架的城市道路损伤检测与评估项目系统【附完整源码+数据集】
本项目基于深度学习的YOLO框架,成功实现了城市道路损伤的自动检测与评估。通过YOLOv8模型,我们能够高效地识别和分类路面裂缝、井盖移位、坑洼路面等常见的道路损伤类型。系统的核心优势在于其高效性和实时性,能够实时监控城市道路,自动标注损伤类型,并生成损伤评估报告。
145 0
基于深度学习YOLO框架的城市道路损伤检测与评估项目系统【附完整源码+数据集】
|
2月前
|
机器学习/深度学习 自动驾驶 算法
基于深度学习的YOLO框架的7种交通场景识别项目系统【附完整源码+数据集】
在智慧交通和智能驾驶日益普及的今天,准确识别复杂交通场景中的关键元素已成为自动驾驶系统的核心能力之一。传统的图像处理技术难以适应高动态、复杂天气、多目标密集的交通环境,而基于深度学习的目标检测算法,尤其是YOLO(You Only Look Once)系列,因其检测速度快、精度高、可部署性强等特点,在交通场景识别中占据了重要地位。
316 0
基于深度学习的YOLO框架的7种交通场景识别项目系统【附完整源码+数据集】
|
2月前
|
算法 数据可视化 数据挖掘
基于EM期望最大化算法的GMM参数估计与三维数据分类系统python源码
本内容展示了基于EM算法的高斯混合模型(GMM)聚类实现,包含完整Python代码、运行效果图及理论解析。程序使用三维数据进行演示,涵盖误差计算、模型参数更新、结果可视化等关键步骤,并附有详细注释与操作视频,适合学习EM算法与GMM模型的原理及应用。
|
3月前
|
机器学习/深度学习 存储 PyTorch
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
本文通过使用 Kaggle 数据集训练情感分析模型的实例,详细演示了如何将 PyTorch 与 MLFlow 进行深度集成,实现完整的实验跟踪、模型记录和结果可复现性管理。文章将系统性地介绍训练代码的核心组件,展示指标和工件的记录方法,并提供 MLFlow UI 的详细界面截图。
122 2
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
|
前端开发 关系型数据库 MySQL
基于python“花开富贵”花园管理系统
感谢大学同学的陪伴与帮助,在我独立编写毕业论文期间,大学同学的鼓励与耐心的帮助使得我少走很多弯路,节省毕业论文的编写时间,也让我有更多精力去完善我开发的系统。 在整个系统开发过程中,我周围的同学和朋友给了我很多意见,所以我很快就确认了系统的商业思想。在次,我由衷的向他们表示感激。
38 0
|
3月前
|
机器学习/深度学习 运维 监控
服务器会“生病”?聊聊深度学习咋当系统“老中医”
服务器会“生病”?聊聊深度学习咋当系统“老中医”
84 0
|
5月前
|
前端开发 JavaScript 关系型数据库
基于python的租房网站-房屋出租租赁系统(python+django+vue)源码+运行
该项目是基于python/django/vue开发的房屋租赁系统/租房平台,作为本学期的课程作业作品。欢迎大家提出宝贵建议。
161 6

热门文章

最新文章

推荐镜像

更多