基于Python深度学习果蔬识别系统实现

简介: 本项目基于Python和TensorFlow,使用ResNet卷积神经网络模型,对12种常见果蔬(如土豆、苹果等)的图像数据集进行训练,构建了一个高精度的果蔬识别系统。系统通过Django框架搭建Web端可视化界面,用户可上传图片并自动识别果蔬种类。该项目旨在提高农业生产效率,广泛应用于食品安全、智能农业等领域。CNN凭借其强大的特征提取能力,在图像分类任务中表现出色,为实现高效的自动化果蔬识别提供了技术支持。

一、简介

果蔬识别系统,主要开发语言为Python,基于TensorFlow搭建ResNet卷积神经网络算法模型,通过对12种常见的果蔬('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜')图像数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django框架搭建Web网页端可视化操作界面,以下为项目实现介绍。

二、选题目的

随着人工智能技术的飞速发展,计算机视觉在许多领域中得到了广泛应用,尤其是在图像识别方面。图像分类技术作为计算机视觉的重要研究方向,近年来取得了显著进展。卷积神经网络(Convolutional Neural Networks, CNN)作为深度学习的一种有效模型,已广泛应用于图像处理任务,包括图像分类、物体检测、面部识别等领域。特别是在图像分类任务中,CNN凭借其良好的特征提取能力和高效的训练过程,成为解决实际问题的首选方法。

在此背景下,本课题《基于Python下深度学习的的果蔬识别系统的设计与实现》应运而生。果蔬识别作为农业科技中的一个重要应用领域,不仅有助于提高农业生产效率,还可以广泛应用于食品安全、智能农业、自动化分拣等场景。传统的果蔬识别方法主要依赖人工检测或者简单的图像处理技术,效率低且准确性不足。因此,基于深度学习的自动化果蔬识别技术具有巨大的应用潜力。

本课题的主要目的是设计并实现一个基于卷积神经网络的果蔬识别系统,通过训练深度学习模型,使系统能够自动识别不同类型的果蔬。具体而言,本系统将利用收集到的12种常见果蔬的图片数据集,构建并训练一个卷积神经网络模型,最终实现较高的识别准确率。通过该系统,用户可以通过上传果蔬图片,系统将自动识别出图片中的果蔬种类,并返回结果。

选择卷积神经网络作为模型框架是因为CNN在图像分类任务中表现出色,能够有效提取图像的局部特征并进行学习。本系统将利用TensorFlow深度学习框架进行模型的构建与训练,该框架拥有丰富的工具和优化算法,能够帮助我们快速搭建和优化深度学习模型。数据集方面,系统将收集12种常见的果蔬图片数据,包括土豆、圣女果、大白菜、大葱、梨、胡萝卜、芒果、苹果、西红柿、韭菜、香蕉、黄瓜等。这些数据将用于训练卷积神经网络模型,并通过反向传播算法不断优化模型的参数。

三、环境配置

  • Python解释器
  • Pycharm
  • TensorFlow等依赖包

四、算法搭建与训练

python

代码解读

复制代码

model = keras.applications.ResNet50(weights='imagenet', include_top=False, input_shape=(img_width,img_height,3))

keras.applications.ResNet50

  • 这里使用的是 Keras 提供的一个高层API中的 ResNet50 模型。
  • ResNet50 是一个深度卷积神经网络(CNN),由50层构成,广泛用于图像分类任务。它基于残差学习的概念,能够有效地训练非常深的网络。
  • Keras的 applications 模块提供了许多预训练的深度学习模型,包括 ResNet50、VGG16、Inception等,用户可以直接加载这些模型用于迁移学习。

然后通过model.summary()打印模型结构如下:

在完成模型搭建后,准备开始训练模型,在本项目中,指定了20轮迭代训练,其训练过程输出信息如下:

powershell

代码解读

复制代码

Epoch 1/20
62/62 [==============================] - 13s 88ms/step - loss: 1.4565 - accuracy: 0.6870 - val_loss: 2.5458 - val_accuracy: 0.0854
Epoch 2/20
62/62 [==============================] - 4s 63ms/step - loss: 1.0147 - accuracy: 0.9482 - val_loss: 2.4804 - val_accuracy: 0.1260
Epoch 3/20
62/62 [==============================] - 4s 62ms/step - loss: 0.8887 - accuracy: 0.9817 - val_loss: 2.4915 - val_accuracy: 0.0610
Epoch 4/20
62/62 [==============================] - 4s 66ms/step - loss: 0.8212 - accuracy: 0.9919 - val_loss: 2.4764 - val_accuracy: 0.0935
Epoch 5/20
62/62 [==============================] - 4s 63ms/step - loss: 0.7761 - accuracy: 0.9919 - val_loss: 2.4558 - val_accuracy: 0.0976
Epoch 6/20
62/62 [==============================] - 4s 64ms/step - loss: 0.7408 - accuracy: 0.9949 - val_loss: 2.3973 - val_accuracy: 0.1585
Epoch 7/20
62/62 [==============================] - 4s 62ms/step - loss: 0.7103 - accuracy: 0.9959 - val_loss: 2.2823 - val_accuracy: 0.2886
Epoch 8/20
62/62 [==============================] - 4s 62ms/step - loss: 0.6822 - accuracy: 0.9949 - val_loss: 2.1412 - val_accuracy: 0.4065
Epoch 9/20
62/62 [==============================] - 4s 63ms/step - loss: 0.6569 - accuracy: 0.9970 - val_loss: 1.9389 - val_accuracy: 0.5447
Epoch 10/20
62/62 [==============================] - 4s 63ms/step - loss: 0.6301 - accuracy: 0.9959 - val_loss: 1.7184 - val_accuracy: 0.6789
Epoch 11/20
62/62 [==============================] - 4s 63ms/step - loss: 0.6051 - accuracy: 0.9980 - val_loss: 1.5291 - val_accuracy: 0.7642
Epoch 12/20
62/62 [==============================] - 4s 64ms/step - loss: 0.5793 - accuracy: 0.9959 - val_loss: 1.2364 - val_accuracy: 0.8577
Epoch 13/20
62/62 [==============================] - 4s 63ms/step - loss: 0.5535 - accuracy: 0.9980 - val_loss: 1.0483 - val_accuracy: 0.9065
Epoch 14/20
62/62 [==============================] - 4s 63ms/step - loss: 0.5300 - accuracy: 0.9980 - val_loss: 0.9035 - val_accuracy: 0.9228
Epoch 15/20
62/62 [==============================] - 4s 62ms/step - loss: 0.5072 - accuracy: 0.9980 - val_loss: 0.7945 - val_accuracy: 0.9390
Epoch 16/20
62/62 [==============================] - 4s 62ms/step - loss: 0.4857 - accuracy: 0.9980 - val_loss: 0.7137 - val_accuracy: 0.9268
Epoch 17/20
62/62 [==============================] - 4s 64ms/step - loss: 0.4654 - accuracy: 0.9980 - val_loss: 0.6685 - val_accuracy: 0.9431
Epoch 18/20
62/62 [==============================] - 4s 63ms/step - loss: 0.4459 - accuracy: 0.9980 - val_loss: 0.6325 - val_accuracy: 0.9472
Epoch 19/20
62/62 [==============================] - 4s 63ms/step - loss: 0.4284 - accuracy: 0.9980 - val_loss: 0.6004 - val_accuracy: 0.9553
Epoch 20/20
62/62 [==============================] - 4s 62ms/step - loss: 0.4102 - accuracy: 0.9990 - val_loss: 0.5743 - val_accuracy: 0.9431

如上所示,从提供的训练输出信息中可以看到模型在训练过程中的变化趋势。每个epoch(轮次)的输出包含以下几个重要信息:训练损失(loss)训练准确率(accuracy)验证损失(val_loss),和验证准确率(val_accuracy)

  1. 训练损失(loss)和训练准确率(accuracy):

训练损失逐渐下降,从 1.4565 减少到 0.4102,这表明模型在不断优化,学会了如何更好地拟合训练数据。

训练准确率逐渐提高,从 68.70% 提高到 99.90%,显示出模型的性能正在不断提升,已经接近完美地拟合训练集。

  1. 验证损失(val_loss)和验证准确率(val_accuracy)

验证损失(val_loss)虽然在前几轮(比如第一轮的 2.5458)较高,但随着训练的进行,逐渐下降(最终为 0.5743)。这意味着模型在验证集上的表现也在不断提高,过拟合的情况得到了控制。

验证准确率(val_accuracy)同样在逐步提升,从 8.54% 开始,到 94.31% 结束,表明模型在验证集上的预测准确率持续增长。

下面是ACC曲线图和LOSS曲线图

四、Web可视化操作界面搭建

前端基于HTML,CSS,BootStrap等技术搭建前端界面。后端基于Django处理用户请求。其效果如下图所示。


转载来源:https://juejin.cn/post/7444455886149877812

相关文章
|
18天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
80 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
21天前
|
安全 前端开发 数据库
Python 语言结合 Flask 框架来实现一个基础的代购商品管理、用户下单等功能的简易系统
这是一个使用 Python 和 Flask 框架实现的简易代购系统示例,涵盖商品管理、用户注册登录、订单创建及查看等功能。通过 SQLAlchemy 进行数据库操作,支持添加商品、展示详情、库存管理等。用户可注册登录并下单,系统会检查库存并记录订单。此代码仅为参考,实际应用需进一步完善,如增强安全性、集成支付接口、优化界面等。
|
28天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
123 66
|
1月前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
178 73
|
22天前
|
机器学习/深度学习 运维 监控
利用深度学习进行系统健康监控:智能运维的新纪元
利用深度学习进行系统健康监控:智能运维的新纪元
101 30
|
18天前
|
Python
[oeasy]python057_如何删除print函数_dunder_builtins_系统内建模块
本文介绍了如何删除Python中的`print`函数,并探讨了系统内建模块`__builtins__`的作用。主要内容包括: 1. **回忆上次内容**:上次提到使用下划线避免命名冲突。 2. **双下划线变量**:解释了双下划线(如`__name__`、`__doc__`、`__builtins__`)是系统定义的标识符,具有特殊含义。
27 3
|
30天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
55 5
|
1月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
171 6
|
2天前
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
47 22
|
29天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的原理与应用:开启智能时代的大门
深度学习的原理与应用:开启智能时代的大门
161 16

热门文章

最新文章