数学
证明: 当 $H_1\neq 0$ 及 $H_2^2+H_3^2\neq 0$ 时, 快、慢及 Alfv\'en 特征速度 $C_f$, $C_s$ 及 $C_a$ 满足 $$\bex 0
试讨论 Lagrange 形式下的一维理想磁流体力学方程组 (5. 33)-(5. 39) 的类型. 解答: 由 (5. 33), (5. 39) 知 $$\bex 0=\cfrac{\p p}{\p \tau}\sex{\cfrac{\p \tau}{\p t'}-\cfrac{\p u_...
试将一维理想磁流体力学方程组 (5. 10)-(5. 16) 化为一阶拟线性对称双曲组的形式. 解答: 由 (5. 12),(5. 16) 知 $$\beex \bea 0&=\cfrac{\p p}{\p \rho}\sex{\cfrac{\p \rho}{\p t}+u_1\cfrac{\p ...
试证明: 对理想磁流体, 能量守恒方程 (4. 14) 可以写为如下形式: $$\beex \bea \cfrac{\p}{\p t}&\sex{\rho e+\cfrac{1}{2}\rho u^2 +\cfrac{1}{2}\mu_0H^2}\\ +\sum_{k=1}^3 \cfrac{\p}...
设 $\phi$ 及 ${\bf A}$ 分别为电磁场的标势及矢势 (见第一章 $\S$ 6). 试证明: 若 $\phi$ 及 ${\bf A}$ 满足条件 $$\bex \phi+\cfrac{1}{\sigma \mu_0}\Div{\bf A}=0, \eex$$ 则方程 (2.
设定常 (即 $\cfrac{\p {\bf u}}{\p t}={\bf 0}$)、不可压缩 (设 $\rho=1$) 的理想流体所受的体积力仅为重力. 又设磁场满足条件: $({\bf H}\cdot\n){\bf H}={\bf 0}$.
设磁场 ${\bf H}$ 只有一个非零分量, 试证明 $$\bex ({\bf H}\cdot\n){\bf H}={\bf 0}. \eex$$ 证明: 不妨设 ${\bf H}=(0,0,H_3)^T$, 则 $$\bex \Div{\bf H}=0\ra \cfrac{\p H_3}{\p x_3}=0.
由 $$\bex \cfrac{\p \rho}{\p t}&+u_1\cfrac{\p \rho}{\p x}+\rho\cfrac{\p u_1}{\p x}=0, \eex$$ 我们可以引进 Lebesgue 坐标 $(t',m)$, 而将一维磁流体力学方程组化为 Lagrange 形式, 而有较简单的形式.
1. 当磁流体力学方程组中的量只依赖于 $t$ 及一个空间变量时, 该方程组称为一维的. 2. 一维磁流体力学方程组 $$\beex \bea \cfrac{\p H_2}{\p t}& +u_1\cfrac{\p H_2}{\p x} +H_2\cfrac{\p u_1}{\p ...
1. 在流体存在粘性、热传导及 $\sigma\neq \infty$ 时, 磁流体力学方程组是一个拟线性对称双曲 - 抛物耦合组. 2. 在流体存在粘性、热传导但 $\sigma=\infty$ 时, 磁流体力学方程组是一个拟线性对称双曲 - 抛物耦合组.
磁场线``冻结''原理: 在 $\sigma=\infty$ 时, 初始时刻分布在同一磁场线上的质点, 在运动过程中会一直保持在同一磁场线上, 即磁场线好像``冻结''在物质上. 事实上, $\cfrac{{\bf H}}{\rho}$, $\rd {\bf r}$ 满足同一线性齐次 ODE 组:...
1. $$\bex \cfrac{\rd}{\rd t}\int_S {\bf a}\cdot{\bf n}\rd S =\int_S \sez{ \cfrac{\p {\bf a}}{\p t} +(\Div{\bf a}){\bf u}-\rot({\bf u}\times{\bf a}) }\cdot {\bf n}\rd S.
电导率 $\sigma$ 为无穷时的磁流体力学方程组 $$\beex \bea \cfrac{\p {\bf H}}{\p t} &-\rot({\bf u}\times{\bf H})={\bf 0},\\ \Div&{\bf H}=0,\\ \cfrac{\p \rho}{\p t}&+\Div...
不可压情形的磁流体力学方程组 $$\beex \bea \cfrac{\rd {\bf H}}{\rd t}-({\bf H}\cdot\n){\bf u}&=\cfrac{1}{\sigma\mu_0}\lap {\bf H},\\ \Div{\bf H}&=0,\\ \cfrac{\rd {\b...
1. 磁流体力学方程组 $$\beex \bea \cfrac{\p {\bf H}}{\p t} &-\rot({\bf u}\times{\bf H})=\cfrac{1}{\sigma\mu_0}\lap{\bf H},\\ \Div&{\bf H}=0,\\ \cfrac{\p \rho}...
1. 连续性方程 $$\bex \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})=0. \eex$$ 2. 动量守恒方程 $$\bex \cfrac{\p }{\p t}(\rho{\bf u}) +\Div(\rho {\bf u}\otimes{...
1. Maxwell 方程组 $$\bee\label{3_2_1_Maxwell} \bea \Div{\bf D}&=\rho_f,\\ \rot{\bf E}&=-\cfrac{\p {\bf B}}{\p t},\\ \Div{\bf B}&=0,\\ \rot{\bf H}&=\cfra...
1. 磁流体力学研究等离子体这种导电流体在电磁场中的运动. 2. 任何物质由于 $T, p$ 等条件的不同而可以处于固态、液态、气态 (常见的三种聚集态) 或等离子体. 3.
[物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 [物理学与PDEs]第2章习题4 习题 3 的变分 [物理学与PDE...
1. Lagrange 坐标 $$\beex \bea &\quad 0=\int_\Omega\cfrac{\p \rho}{\p t}+\cfrac{\p}{\p x}(\rho u)\rd x\rd t=\int_{\p\Omega} -\rho u\rd x+\rho \rd t...
试引进新的未知函数, 将 $p$ - 方程组 $$\beex \bea \cfrac{\p \tau}{\p t}-\cfrac{\p u}{\p x}&=0,\\ \cfrac{\p u}{\p t}+\cfrac{\p }{\p x}p(\tau)&=F.
设 $L=L(\xi_0,\xi_1,\cdots,\xi_n)$ 关于变量 $\xi_0>0,\xi_1,\cdots,\xi_n$ 为严格凸的. 证明函数 $$\bex M=\cfrac{1}{\xi_0}L(\xi_0,\xi_1,\cdots,\xi_n) \eex$$ 关于变量 $$\be...
对由第 10 题给出的 Lagrange 形式的一维理想流体力学方程组, 给出解在强间断线上应满足的间断连接条件 (假设体积力 $F\equiv 0$). 解答: $$\beex \bea \sez{\tau}\cfrac{\rd x}{\rd t}&=-[u],\\ [u]\cfrac{\...
试证明: 一维理想流体力学方程组的 Lagrange 形式 (5. 22)-(5. 24) 也可写成如下形式 $$\beex \bea \cfrac{\p \tau}{\p t}-\cfrac{\p u}{\p x}&=0,\\ \cfrac{\p u}{\p t}+\cfrac{\p p}{\p ...
设 $\Omega\subset {\bf R}^3$ 为有界域, ${\bf u}$ 为 Navier-Stokes 方程组 (3. 4)-(3. 5) 满足边界条件 (3. 7) 的解, 其中体积力 ${\bf F}={\bf 0}$.
考察固定在 $y=0$ 与 $y=1$ 处两个平板之间的定常粘性不可压缩流体沿 $x$ 方向的流动. 设 $p=p(x)$, 且已知 $p(0) =p_1$, $p(L)=p_2$, $p_1>p_2$.
设有以 $x$ 轴为轴向的等轴截面管道, 其中充满着沿 $x$ 方向流动的不可压缩的理想流体, 在每一横截面上流体的状态相同, 且 $p=p(x)$. 若已知 $p(0) =p_1$, $p(L)=p_2$, 且 $p_1>p_2$, 试确定管内流体的速度 (忽略体积力).
试证明: 由 Navier-Stokes 方程组描述的流体运动一般总是有旋的, 即若 $\rot{\bf u}={\bf 0}$, 则 Navier-Stokes 方程组 (3. 4)-(3. 5) 即化为 Euler 方程组 (1.
设流场中流体的应力张量为 ${\bf P}=(p_{ij})$. 试证明: 在以某点为中心, $r$ 为半径的球面 $S_r$ 上的法向应力分量的平均值, 在 $r\to 0$ 时的极限为该点正应力的平均值, 即成立 $$\bex \lim_{r\to 0}\cfrac{1}{4\pi r^2}\i...
设 ${\bf u}$ 为满足第 3 题中条件的解. 证明 ${\bf u}$ 为如下变分问题 $$\bex \min_{{\bf w}\in A}\cfrac{1}{2}\int_\Omega |{\bf w}|^2\rd x \eex$$ 的解, 其中 $$\bex A=\sed{{\bf w}...
设 $\Omega$ 为单连通区域, 在其边界 $\vGa$ 上给定向量场 ${\bf u}_B$, 则在 $\bar\Omega$ 中存在速度场 ${\bf u}$, 使其在 $\Omega$ 中成立 $\Div{\bf u}=0$, 且该速度场有势, 即存在数量场 $\phi$ 使 ${\bf ...
试证明: 如果质量力有势, 即存在 $\phi$ 使 ${\bf F}=-\n \phi$, 那么理想流体的能量守恒方程的微分形式可写为 $$\bex \cfrac{\rd}{\rd t}\sex{e+\cfrac{u^2}{}+\cfrac{p}{\rho}+\phi} =\cfrac{1}{\rho}\cfrac{\p p}{\p t}+\cfrac{\p \phi}{\p t}.
试证明: 当流场为无旋, 即 $\rot{\bf u}={\bf 0}$ 时, 理想流体的 Euler 方程可写为如下形式: $$\bex \cfrac{\p {\bf u}}{\p t}+\n \cfrac{u^2}{2}+\cfrac{1}{\rho}\n p={\bf F}.
1. 一维粘性热传导流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p }{\p x}(\rho u)&=0,\\ \cfrac{\p u}{\p t}+u\cfrac{\p u}{\p x} +\cfrac{1}{\rho}\cfrac{\p p...
1. 一维理想流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p u}{\p t}+u\cfrac{\p u}{\p x}+\cfrac{1}{\rho }\cfrac{\p p}{\p...
两种坐标: (1) Euler 坐标: 把量表成 $t$, ${\bf x}=(x_1,x_2,x_3)$ 的函数. (2) Lagrange 坐标: 把量表成 $t$ 及流体质点的函数.
[物理学与PDEs]第2章第1节 理想流体力学方程组 1.1 预备知识 [物理学与PDEs]第2章第1节 理想流体力学方程组 1.2 理想流体力学方程组 [物理学与PDEs]第2章第1节 理想流体力学方程组 1.
[物理学与PDEs]第1章第1节 引言 [物理学与PDEs]第1章第2节 预备知识 2.1 Coulomb 定律, 静电场的散度与旋度 [物理学与PDEs]第1章第2节 预备知识 2.2 Ampere-Biot-Savart 定律, 静磁场的散度与旋度 [物理学与PDEs]第1章第2节 预备知识 2.
1. R.H. 条件仅仅给出了越过激波时的能量守恒定律, 即热力学第一定律; 但客观的流体运动过程还需满足热力学第二定律, 即越过激波是个熵增过程: $$\bex S_1>S_0\quad(0,1\mbox{ 分别表示越过激波前、后状态}), \eex$$ 其等价于 (1) $u_->u...
1. 守恒律方程 $$\bex \cfrac{\p f}{\p t}+\cfrac{\p q}{\p x}=0 \eex$$ 在间断线上应满足 ``间断连接条件'': $$\bex [f]\cfrac{\rd x}{\rd t}=[q].
1. 当流体的压力 $p$ 及温度 $T$ 改变时, 密度 $\rho$ 变化很小. 此时可近似地把流体看作是不可压的, 而 $\rho=\const$. 如此, 流体动力学方程组中的质量、动量守恒方程组可化为 $$\bee\label{2_3_NSE} \bea \Div{\bf u}&=0,\...
一维粘性热传导流体动力学方程组: $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p }{\p x}(\rho u)&=0,\\ \cfrac{\p u}{\p t}+u\cfrac{\p u}{\p x} +\cfrac{1}{\rho}\cfrac{\p p}...
1. 粘性热传导流体动力学方程组可化为 $$\beex \bea \cfrac{\p \rho}{\p t}&+({\bf u}\cdot\n)\rho=-\rho \Div{\bf u},\\ \cfrac{\p{\bf u}}{\p t}&-\cfrac{\mu}{\rho}\lap {\bf...
粘性热传导流体动力学方程组: $$\beex \bea \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})&=0,\\ \rho \cfrac{\rd {\bf u}}{\rd t} +\n p -\n\sez{ \sex{\mu'-\cfrac{2}{3}\mu}\Di...
1. ${\bf P}=(p_{ij})$, 而 $$\bex p_{ij}=-p\delta_{ij}+\tau_{ij}, \eex$$ 其中 $\tau_{ij}$ 对应于摩擦切应力. 2.
1. 在有粘性的情形, 外界流体对 $\Omega$ 的作用力, 不仅有表面上的压力 (正压力), 也有表面上的内摩擦力 (切应力). 2. 于 $M$ 处以 ${\bf n}$ 为法向的单位面积所受的面力 (${\bf n}$ 所指一侧的流体施加的) 为 $$\bex {\bf ...
1. 实际的流体与理想流体的主要区别在于: 前者具有粘性 (内摩擦) 和热传导. 2. 内摩擦 (1) 当两层流体有相对运动时, 方有摩擦力; 它是一种内力; 单位面积上所受的内力称为应力; 而它通常与表面相切, 而称为切应力.
1. 一维理想流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t}(\rho u) +\cfrac{\p}{\p x}(\rho u^2+p)&=\rho F,\\ \cf...
1. 局部音速 $c$: $c^2=\cfrac{\p p}{\p \rho}>0$. 2. 将理想流体力学方程组 $$\beex \bea \rho\cfrac{\p {\bf u}}{\p t} +(\rho {\bf u}\cdot\n){\bf u}+\n p&=\rho{...
1. 质量守恒定律: 连续性方程 $$\bee\label{2_1_2_zl} \cfrac{\p\rho}{\p t}+\Div(\rho{\bf u})=0. \eee$$ 2. 动量守恒定律: $$\bee\label{2_1_2_dl} \cfrac{\p}{\p t}(\rh...