Loading [MathJax]/jax/output/HTML-CSS/jax.js

[物理学与PDEs]第2章习题12 严格凸性的转换

简介: L=L(ξ0,ξ1,,ξn) 关于变量 ξ0>0,ξ1,,ξn 为严格凸的. 证明函数 \bexM=1ξ0L(ξ0,ξ1,,ξn)\eex 关于变量 $$\be...

L=L(ξ0,ξ1,,ξn) 关于变量 ξ0>0,ξ1,,ξn 为严格凸的. 证明函数 \bexM=1ξ0L(ξ0,ξ1,,ξn)\eex 关于变量 \bexη0=1ξ0,ξ1=ξ1ξ0,,ηn=ξnξ0\eex 是严格凸的.

 

证明: 仅对 n=1 的情形加以证明. 先给出 \bexM=η0L\sex1η0,η1η0.\eex 于是 \beex \bea M_{\eta_0}&=L+\eta_0 \sez{L_{\xi_0}\sex{-\cfrac{1}{\eta_0^2}} +L_{\xi_1}\sex{-\cfrac{\eta_1}{\eta_0^2}}}\\ &=L-\cfrac{1}{\eta_0}L_{\xi_0} -\cfrac{\eta_1}{\eta_0}L_{\xi_1},\\ M_{\eta_1}&=\eta_0L_{\xi_1}\cfrac{1}{\eta_0} =L_{\xi_1}; \eea \eeex \beex \bea M_{\eta_0\eta_1} &=L_{\xi_0}\sex{-\cfrac{1}{\eta_0^2}} +L_{\xi_1}\sex{-\cfrac{\eta_1}{\eta_0^2}}\\ &\quad+\cfrac{1}{\eta_0^2}L_{\xi_0}-\cfrac{1}{\eta_0}\sez{ L_{\xi_0\xi_0}\sex{-\cfrac{1}{\eta_0^2}} +L_{\xi_0\xi_1}\sex{-\cfrac{\eta_1}{\eta_0^2}} }\\ &\quad+\cfrac{\eta_1}{\eta_0^2}L_{\xi_1} -\cfrac{\eta_1}{\eta_0^2} \sez{ L_{\xi_0\xi_1}\sex{-\cfrac{1}{\eta_0^2}} +L_{\xi_1\xi_1}\sex{-\cfrac{\eta_1}{\eta_0^2}} }\\ &=\cfrac{1}{\eta_0^3}\sex{ L_{\xi_0\xi_0} +2\eta_1L_{\xi_0\xi_1}+\eta_1^2L_{\xi_1\xi_1} }\\ &=\cfrac{1}{\eta_0^3} \sex{\ba{cc}1& \eta_1 \ea} \sex{\ba{cc} L_{\xi_0\xi_0}&L_{\xi_0\xi_1}\\ L_{\xi_0\xi_1}&L_{\xi_1\xi_1} \ea} \sex{\ba{cc} 1\\ \eta_1 \ea}\\ &>0, \eea \eeex \beex \bea M_{\eta_0\eta_1} &=M_{\eta_1\eta_0}=L_{\xi_1\xi_0}\sex{-\cfrac{1}{\eta_0^2}} +L_{\xi_1\xi_1}\sex{-\cfrac{\eta_1}{\eta_0^2}}\\ &=-\cfrac{1}{\eta_0^2}\sex{L_{\xi_0\xi_1}+\eta_1 L_{\xi_1\xi_1}},\\ M_{\eta_1\eta_1}&=\cfrac{1}{\eta_0}L_{\xi_1\xi_1}; \eea \eeex \beex \bea M_{\eta_0\eta_0}M_{\eta_1\eta_1}-M_{\eta_0\eta_1}^2 &=\cfrac{1}{\eta_0^4} \sex{L_{\xi_0\xi_0}+2\eta_1L_{\xi_0\xi_1}+\eta_1^2L_{\xi_1\xi_1}}L_{\xi_1\xi_1}\\ &\quad -\cfrac{1}{\eta_0^4} \sex{L_{\xi_0\xi_1}^2+2\eta_1L_{\xi_0\xi_1L_{\xi_1\xi_1} +\eta_1^2L_{\xi_1\xi_1}^2}}\\ &=\cfrac{1}{\eta_0^4}L_{\xi_0\xi_0}L_{\eta_1\eta_1}\\ &>0. \eea \eeex

 

相关文章
[再寄小读者之数学篇](2014-11-14 矩阵的应用: 友谊定理)
友谊定理: 如果在一群人中任何两个人都恰好有一个共同的朋友, 那么有一个人是每个人的朋友.
836 0
[物理学与PDEs]第5章习题10 多凸函数一个例子
证明函数 \bex \hat W({\bf F})=\sedd{\ba{ll} \cfrac{1}{\det{\bf F}},&if\ \det{\bf F}>0,\\ +\infty,&if\ \det{\bf F}\leq 0 \ea} \eex 是多凸的.
849 0
[物理学与PDEs]第5章习题参考解答
[物理学与PDEs]第5章习题1 矩阵的极分解   [物理学与PDEs]第5章习题2 Jacobian 的物质导数   [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性   [物理学与PDEs]第5章习题4 广义 Hookean 定律的张量的对称性   [物理学与...
717 0
[物理学与PDEs]第3章习题7 快、慢及Alfv\'en 特征速度的比较
证明: 当 H10H22+H230 时, 快、慢及 Alfv\'en 特征速度 Cf, CsCa 满足 $$\bex 0
718 0
[物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程
试证明: 利用连续性方程及动量方程, 能量守恒方程 (2. 15) 可化为 (2. 21) 的形式.   证明: 注意到 $$\beex \bea &\quad\cfrac{\p}{\p t}\sex{\cfrac{1}{2}\rho u^2} +\Div\sez{\cfrac{1}{2}\rh...
823 0
[物理学与PDEs]第4章习题3 一维理想反应流体力学方程组的数学结构
证明: Euler 坐标系下的一维反应流体力学方程组 (3. 10)-(3. 13) 也是一个一阶拟线性双曲型方程组. 证明: 由 (3. 10), (3. 12), (3. 13) 知 $$\bex \cfrac{1}{\rho c^2}\cfrac{\p p}{\p t} +\cfrac{u}{\rho c^2}\cfrac{\p p}{\p x}+\cfrac{\p u}{\p x}=0.
865 0