[物理学与PDEs]第2章习题12 严格凸性的转换

简介: 设 $L=L(\xi_0,\xi_1,\cdots,\xi_n)$ 关于变量 $\xi_0>0,\xi_1,\cdots,\xi_n$ 为严格凸的. 证明函数 $$\bex M=\cfrac{1}{\xi_0}L(\xi_0,\xi_1,\cdots,\xi_n) \eex$$ 关于变量 $$\be...

设 $L=L(\xi_0,\xi_1,\cdots,\xi_n)$ 关于变量 $\xi_0>0,\xi_1,\cdots,\xi_n$ 为严格凸的. 证明函数 $$\bex M=\cfrac{1}{\xi_0}L(\xi_0,\xi_1,\cdots,\xi_n) \eex$$ 关于变量 $$\bex \eta_0=\cfrac{1}{\xi_0},\quad \xi_1=\cfrac{\xi_1}{\xi_0},\cdots,\eta_n=\cfrac{\xi_n}{\xi_0} \eex$$ 是严格凸的.

 

证明: 仅对 $n=1$ 的情形加以证明. 先给出 $$\bex M=\eta_0 L\sex{\cfrac{1}{\eta_0},\cfrac{\eta_1}{\eta_0}}. \eex$$ 于是 $$\beex \bea M_{\eta_0}&=L+\eta_0 \sez{L_{\xi_0}\sex{-\cfrac{1}{\eta_0^2}} +L_{\xi_1}\sex{-\cfrac{\eta_1}{\eta_0^2}}}\\ &=L-\cfrac{1}{\eta_0}L_{\xi_0} -\cfrac{\eta_1}{\eta_0}L_{\xi_1},\\ M_{\eta_1}&=\eta_0L_{\xi_1}\cfrac{1}{\eta_0} =L_{\xi_1}; \eea \eeex$$ $$\beex \bea M_{\eta_0\eta_1} &=L_{\xi_0}\sex{-\cfrac{1}{\eta_0^2}} +L_{\xi_1}\sex{-\cfrac{\eta_1}{\eta_0^2}}\\ &\quad+\cfrac{1}{\eta_0^2}L_{\xi_0}-\cfrac{1}{\eta_0}\sez{ L_{\xi_0\xi_0}\sex{-\cfrac{1}{\eta_0^2}} +L_{\xi_0\xi_1}\sex{-\cfrac{\eta_1}{\eta_0^2}} }\\ &\quad+\cfrac{\eta_1}{\eta_0^2}L_{\xi_1} -\cfrac{\eta_1}{\eta_0^2} \sez{ L_{\xi_0\xi_1}\sex{-\cfrac{1}{\eta_0^2}} +L_{\xi_1\xi_1}\sex{-\cfrac{\eta_1}{\eta_0^2}} }\\ &=\cfrac{1}{\eta_0^3}\sex{ L_{\xi_0\xi_0} +2\eta_1L_{\xi_0\xi_1}+\eta_1^2L_{\xi_1\xi_1} }\\ &=\cfrac{1}{\eta_0^3} \sex{\ba{cc}1& \eta_1 \ea} \sex{\ba{cc} L_{\xi_0\xi_0}&L_{\xi_0\xi_1}\\ L_{\xi_0\xi_1}&L_{\xi_1\xi_1} \ea} \sex{\ba{cc} 1\\ \eta_1 \ea}\\ &>0, \eea \eeex$$ $$\beex \bea M_{\eta_0\eta_1} &=M_{\eta_1\eta_0}=L_{\xi_1\xi_0}\sex{-\cfrac{1}{\eta_0^2}} +L_{\xi_1\xi_1}\sex{-\cfrac{\eta_1}{\eta_0^2}}\\ &=-\cfrac{1}{\eta_0^2}\sex{L_{\xi_0\xi_1}+\eta_1 L_{\xi_1\xi_1}},\\ M_{\eta_1\eta_1}&=\cfrac{1}{\eta_0}L_{\xi_1\xi_1}; \eea \eeex$$ $$\beex \bea M_{\eta_0\eta_0}M_{\eta_1\eta_1}-M_{\eta_0\eta_1}^2 &=\cfrac{1}{\eta_0^4} \sex{L_{\xi_0\xi_0}+2\eta_1L_{\xi_0\xi_1}+\eta_1^2L_{\xi_1\xi_1}}L_{\xi_1\xi_1}\\ &\quad -\cfrac{1}{\eta_0^4} \sex{L_{\xi_0\xi_1}^2+2\eta_1L_{\xi_0\xi_1L_{\xi_1\xi_1} +\eta_1^2L_{\xi_1\xi_1}^2}}\\ &=\cfrac{1}{\eta_0^4}L_{\xi_0\xi_0}L_{\eta_1\eta_1}\\ &>0. \eea \eeex$$

 

目录
相关文章
[物理学与PDEs]第5章习题10 多凸函数一个例子
证明函数 $$\bex \hat W({\bf F})=\sedd{\ba{ll} \cfrac{1}{\det{\bf F}},&if\ \det{\bf F}>0,\\ +\infty,&if\ \det{\bf F}\leq 0 \ea} \eex$$ 是多凸的.
829 0
[物理学与PDEs]第5章习题参考解答
[物理学与PDEs]第5章习题1 矩阵的极分解   [物理学与PDEs]第5章习题2 Jacobian 的物质导数   [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性   [物理学与PDEs]第5章习题4 广义 Hookean 定律的张量的对称性   [物理学与...
698 0
[物理学与PDEs]第5章习题1 矩阵的极分解
证明引理 2. 1.    证明:   (1)  先证明存在正交阵 ${\bf P},{\bf Q}$ 及对角阵 ${\bf D}$ 使得 $$\bex {\bf F}={\bf P}{\bf D}{\bf Q}.
836 0
|
资源调度 语音技术
[物理学与PDEs]书中出现的符号及其意义汇总
1. 标量   $\ve_0$: $=8.85419\times 10^{-2}C^2/(N\cdot m^2)$ 真空中的介电常数   $\ve$: 介电常数   $\ve_r$: $=1+\chi_e$ 相对介电常数   $\chi_e$: 电极化率   $\mu_0$: $...
823 0
[物理学与PDEs]第4章习题参考解答
[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程   [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程   [物理学与PDEs]第4章习题3 一维理想反应流体力学方程组的数学结构   [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.
822 0
[物理学与PDEs]第3章习题参考解答
[物理学与PDEs]第3章习题1 只有一个非零分量的磁场   [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量   [物理学与PDEs]第3章习题3电磁场的矢势在 Lorentz 规范下满足的方程   [物理学与PDEs]第3章习题4 理想磁流体的...
797 0
[物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程
试证明: 利用连续性方程及动量方程, 能量守恒方程 (2. 15) 可化为 (2. 21) 的形式.   证明: 注意到 $$\beex \bea &\quad\cfrac{\p}{\p t}\sex{\cfrac{1}{2}\rho u^2} +\Div\sez{\cfrac{1}{2}\rh...
808 0
[物理学与PDEs]第3章习题7 快、慢及Alfv\'en 特征速度的比较
证明: 当 $H_1\neq 0$ 及 $H_2^2+H_3^2\neq 0$ 时, 快、慢及 Alfv\'en 特征速度 $C_f$, $C_s$ 及 $C_a$ 满足 $$\bex 0
712 0
|
Perl
[物理学与PDEs]第3章习题4 理想磁流体的能量守恒方程
试证明: 对理想磁流体, 能量守恒方程 (4. 14) 可以写为如下形式: $$\beex \bea \cfrac{\p}{\p t}&\sex{\rho e+\cfrac{1}{2}\rho u^2 +\cfrac{1}{2}\mu_0H^2}\\ +\sum_{k=1}^3 \cfrac{\p}...
906 0
|
算法框架/工具
[物理学与PDEs]第4章习题3 一维理想反应流体力学方程组的数学结构
证明: Euler 坐标系下的一维反应流体力学方程组 (3. 10)-(3. 13) 也是一个一阶拟线性双曲型方程组. 证明: 由 (3. 10), (3. 12), (3. 13) 知 $$\bex \cfrac{1}{\rho c^2}\cfrac{\p p}{\p t} +\cfrac{u}{\rho c^2}\cfrac{\p p}{\p x}+\cfrac{\p u}{\p x}=0.
855 0