[物理学与PDEs]第3章第2节 磁流体力学方程组 2.1 考虑到导电媒质 (等离子体) 的运动对 Maxwell 方程组的修正

简介: 1.  Maxwell 方程组 $$\bee\label{3_2_1_Maxwell} \bea \Div{\bf D}&=\rho_f,\\ \rot{\bf E}&=-\cfrac{\p {\bf B}}{\p t},\\ \Div{\bf B}&=0,\\ \rot{\bf H}&=\cfra...

1.  Maxwell 方程组 \bee\label{3_2_1_Maxwell} \bea \Div{\bf D}&=\rho_f,\\ \rot{\bf E}&=-\cfrac{\p {\bf B}}{\p t},\\ \Div{\bf B}&=0,\\ \rot{\bf H}&=\cfrac{\p {\bf D}}{\p t}+{\bf j}_f, \eea \eee

\bee\label{3_2_1_Maxwell} \bea \Div{\bf D}&=\rho_f,\\ \rot{\bf E}&=-\cfrac{\p {\bf B}}{\p t},\\ \Div{\bf B}&=0,\\ \rot{\bf H}&=\cfrac{\p {\bf D}}{\p t}+{\bf j}_f, \eea \eee
其中 D=\veE, B=μH, \bexjf=σ(E+u×B)=σ(E+μ0u×H).\eex

 

 

2.  由于等离子体是良导体, σ1, 而 (???)4\pD\pt 可忽略, 成为 \bee\rotH=σ(E+μ0u×H).\eee

 

 

3.  等离子体中, EH, 故只考虑 H 的运动 (消去 E): \beex \bea &\quad {\bf E}=\cfrac{1}{\sigma}\rot{\bf H}-\mu_0{\bf u}\times{\bf H}\\ &\ra \cfrac{\p {\bf H}}{\p t} =-\cfrac{1}{\sigma\mu_0}\rot\rot{\bf H}+\rot({\bf u}\times{\bf H})\quad(\eqref{3_2_1_Maxwell}_2)\\ &\quad\quad\quad\ =\cfrac{1}{\sigma \mu_0}\lap{\bf H} +\rot({\bf u}\times{\bf H}). \eea \eeex

 

目录
打赏
0
0
0
0
15
分享
相关文章
【MATLAB 】 EWT 信号分解+希尔伯特黄变换+边际谱算法
【MATLAB 】 EWT 信号分解+希尔伯特黄变换+边际谱算法
289 0
【MATLAB 】 CEEMDAN 信号分解+希尔伯特黄变换+边际谱算法
【MATLAB 】 CEEMDAN 信号分解+希尔伯特黄变换+边际谱算法
312 0
【MATLAB 】 ICEEMDAN 信号分解+希尔伯特黄变换+边际谱算法
【MATLAB 】 ICEEMDAN 信号分解+希尔伯特黄变换+边际谱算法
403 0
[物理学与PDEs]第2章第1节 理想流体力学方程组 1.4 一维理想流体力学方程组
1.  一维理想流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t}(\rho u) +\cfrac{\p}{\p x}(\rho u^2+p)&=\rho F,\\ \cf...
843 0
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.2 考虑到电磁场的存在对流体力学方程组的修正
1.  连续性方程 \bex\pρ\pt+\Div(ρu)=0.\eex
    2.  动量守恒方程 $$\bex \cfrac{\p }{\p t}(\rho{\bf u}) +\Div(\rho {\bf u}\otimes{...
769 0
[物理学与PDEs]第3章第3节 电导率 σ 为无穷时的磁流体力学方程组 3.2 向量场过任一随流体运动的曲面的通量对时间的微式及其应用
1.  $$\bex \cfrac{\rd}{\rd t}\int_S {\bf a}\cdot{\bf n}\rd S =\int_S \sez{ \cfrac{\p {\bf a}}{\p t} +(\Div{\bf a}){\bf u}-\rot({\bf u}\times{\bf a}) }\cdot {\bf n}\rd S.
758 0
[物理学与PDEs]第3章第4节 磁流体力学方程组的数学结构
1.  在流体存在粘性、热传导及 σ 时, 磁流体力学方程组是一个拟线性对称双曲 - 抛物耦合组.     2.  在流体存在粘性、热传导但 σ= 时, 磁流体力学方程组是一个拟线性对称双曲 - 抛物耦合组.
777 0
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.3 磁流体力学方程组
1.  磁流体力学方程组 $$\beex \bea \cfrac{\p {\bf H}}{\p t} &-\rot({\bf u}\times{\bf H})=\cfrac{1}{\sigma\mu_0}\lap{\bf H},\\ \Div&{\bf H}=0,\\ \cfrac{\p \rho}...
812 0
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.2 反应流体力学方程组形式的化约
1.  粘性热传导反应流体力学方程组 $$\beex \bea \cfrac{\rd \rho}{\rd t}&+\rho \Div{\bf u}=0,\\ \cfrac{\rd Z}{\rd t}&=-\bar k(\rho,p,Z)Z,\\ \cfrac{\rd {\bf u}}{\rd t}&...
690 0
[物理学与PDEs]第3章第5节 一维磁流体力学方程组 5.1 一维磁流体力学方程组
1.  当磁流体力学方程组中的量只依赖于 t 及一个空间变量时, 该方程组称为一维的.     2.  一维磁流体力学方程组 $$\beex \bea \cfrac{\p H_2}{\p t}& +u_1\cfrac{\p H_2}{\p x} +H_2\cfrac{\p u_1}{\p ...
739 0