[物理学与PDEs]第2章习题4 习题 3 的变分

简介: 设 ${\bf u}$ 为满足第 3 题中条件的解. 证明 ${\bf u}$ 为如下变分问题 $$\bex \min_{{\bf w}\in A}\cfrac{1}{2}\int_\Omega |{\bf w}|^2\rd x \eex$$ 的解, 其中 $$\bex A=\sed{{\bf w}...

设 ${\bf u}$ 为满足第 3 题中条件的解. 证明 ${\bf u}$ 为如下变分问题 $$\bex \min_{{\bf w}\in A}\cfrac{1}{2}\int_\Omega |{\bf w}|^2\rd x \eex$$ 的解, 其中 $$\bex A=\sed{{\bf w}\in C^1(\Omega)\cap C^0(\bar \Omega);\ \Div{\bf w}=0,\mbox{in }\Omega;\ {\bf w}\cdot {\bf n}={\bf u}_B\cdot{\bf n}\mbox{ on }\vGa}. \eex$$

 

证明: 对 $\forall\ {\bf w}\in A$, 令 ${\bf v}={\bf w}-{\bf u}$, 则 $$\bex \Div{\bf v}=0,\mbox{in }\Omega;\quad {\bf v}\cdot{\bf n}=0,\mbox{on }\vGa. \eex$$ 于是 $$\beex \bea \cfrac{1}{2}\int_\Omega |{\bf w}|^2\rd x &=\cfrac{1}{2}\int_\Omega |{\bf u}+{\bf v}|^2\rd x\\ &=\cfrac{1}{2}\int_\Omega |{\bf u}|^2+2{\bf u}\cdot{\bf v}+|{\bf v}|^2\rd x\\ &=\cfrac{1}{2}\int_\Omega |{\bf u}|^2 -2\n\phi\cdot{\bf v}+|{\bf v}|^2\rd x\\ &=\cfrac{1}{2}\int_\Omega |{\bf u}|^2+2\phi \cdot\Div{\bf v}+|{\bf v}|^2\rd x -\int_\vGa \phi{\bf v}\cdot{\bf n}\rd S\\ &=\cfrac{1}{2}\int_\Omega |{\bf u}|^2+|{\bf v}|^2\rd x\\ &\geq \cfrac{1}{2}\int_\Omega |{\bf u}|^2\rd x. \eea \eeex$$

 

目录
相关文章
[物理学与PDEs]第5章习题10 多凸函数一个例子
证明函数 $$\bex \hat W({\bf F})=\sedd{\ba{ll} \cfrac{1}{\det{\bf F}},&if\ \det{\bf F}>0,\\ +\infty,&if\ \det{\bf F}\leq 0 \ea} \eex$$ 是多凸的.
829 0
|
机器学习/深度学习
[物理学与PDEs]第5章习题2 Jacobian 的物质导数
验证 (3. 6) 式, 即证明 $$\bex \cfrac{\rd J}{\rd t}=J\Div_y {\bf v}. \eex$$   证明: $$\beex \bea \cfrac{\rd J}{\rd t} &=\cfrac{\rd }{\rd t}|{\bf F}|\\ &=\cfr...
608 0
[物理学与PDEs]第5章习题1 矩阵的极分解
证明引理 2. 1.    证明:   (1)  先证明存在正交阵 ${\bf P},{\bf Q}$ 及对角阵 ${\bf D}$ 使得 $$\bex {\bf F}={\bf P}{\bf D}{\bf Q}.
836 0
[物理学与PDEs]第5章习题参考解答
[物理学与PDEs]第5章习题1 矩阵的极分解   [物理学与PDEs]第5章习题2 Jacobian 的物质导数   [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性   [物理学与PDEs]第5章习题4 广义 Hookean 定律的张量的对称性   [物理学与...
698 0
|
资源调度
[物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性
试证明: 在物质描述下, 动量矩守恒定律等价于第二 Piola 应力张量的对称性.   证明: 由 $$\beex \bea \int_{G_t}\rho\sex{{\bf y}\times\cfrac{\rd {\bf v}}{\rd t}}\rd y &=\int_{G_0} \rho_0\...
1045 0
|
消息中间件
[物理学与PDEs]第5章习题4 广义 Hookean 定律的张量的对称性
设材料是超弹性的, 并设参考构形为自然状态, 证明由线性化得到的张量 ${\bf A}=(a_{ijkl})=\sex{2\cfrac{\p \bar p_{ij}}{c_{kl}}}$ 具有以下的对称性: $$\bex a_{ijkl}=a_{klij}.
570 0
[物理学与PDEs]第3章习题7 快、慢及Alfv\'en 特征速度的比较
证明: 当 $H_1\neq 0$ 及 $H_2^2+H_3^2\neq 0$ 时, 快、慢及 Alfv\'en 特征速度 $C_f$, $C_s$ 及 $C_a$ 满足 $$\bex 0
712 0
|
Perl
[物理学与PDEs]第3章习题4 理想磁流体的能量守恒方程
试证明: 对理想磁流体, 能量守恒方程 (4. 14) 可以写为如下形式: $$\beex \bea \cfrac{\p}{\p t}&\sex{\rho e+\cfrac{1}{2}\rho u^2 +\cfrac{1}{2}\mu_0H^2}\\ +\sum_{k=1}^3 \cfrac{\p}...
906 0
|
关系型数据库 RDS
[物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题
设 $\Omega$ 为单连通区域, 在其边界 $\vGa$ 上给定向量场 ${\bf u}_B$, 则在 $\bar\Omega$ 中存在速度场 ${\bf u}$, 使其在 $\Omega$ 中成立 $\Div{\bf u}=0$, 且该速度场有势, 即存在数量场 $\phi$ 使 ${\bf ...
912 0
[物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程
试证明: 利用连续性方程及动量方程, 能量守恒方程 (2. 15) 可化为 (2. 21) 的形式.   证明: 注意到 $$\beex \bea &\quad\cfrac{\p}{\p t}\sex{\cfrac{1}{2}\rho u^2} +\Div\sez{\cfrac{1}{2}\rh...
808 0