[物理学与PDEs]第2章习题2 质量力有势时的能量方程

简介: 试证明: 如果质量力有势, 即存在 $\phi$ 使 ${\bf F}=-\n \phi$, 那么理想流体的能量守恒方程的微分形式可写为 $$\bex \cfrac{\rd}{\rd t}\sex{e+\cfrac{u^2}{}+\cfrac{p}{\rho}+\phi} =\cfrac{1}{\rho}\cfrac{\p p}{\p t}+\cfrac{\p \phi}{\p t}.

试证明: 如果质量力有势, 即存在 $\phi$ 使 ${\bf F}=-\n \phi$, 那么理想流体的能量守恒方程的微分形式可写为 $$\bex \cfrac{\rd}{\rd t}\sex{e+\cfrac{u^2}{}+\cfrac{p}{\rho}+\phi} =\cfrac{1}{\rho}\cfrac{\p p}{\p t}+\cfrac{\p \phi}{\p t}. \eex$$

 

证明: 由 (1. 21), $$\bex \cfrac{\rd }{\rd t}\sex{e+\cfrac{u^2}{2}} +\cfrac{1}{\rho }[p\Div{\bf u}+({\bf u}\cdot\n)p]=-({\bf u}\cdot\n)\phi, \eex$$ 而又 $$\beex \bea \cfrac{1}{\rho}[p\Div{\bf u}+({\bf u}\cdot\n)p] &=\cfrac{p}{\rho^2}\sez{-\cfrac{\rd \rho}{\rd t}} +\cfrac{1}{\rho}\sex{\cfrac{\rd p}{\rd t}-\cfrac{\p t}{\p t}}\\ &=p\cfrac{\rd }{\rd t}\cfrac{1}{\rho} +\cfrac{1}{\rho}\cfrac{\rd p}{\rd t} -\cfrac{1}{\rho}\cfrac{\p p}{\p t}\\ &=\cfrac{\rd }{\rd t}\cfrac{p}{\rho} -\cfrac{1}{\rho}\cfrac{\p p}{\p t},\\ -({\bf u}\cdot\n)\phi&=-\cfrac{\rd\phi}{\rd t}+\cfrac{\p \phi}{\p t}, \eea \eeex$$ 我们有 $$\bex \cfrac{\rd}{\rd t}\sex{e+\cfrac{u^2}{2}+\cfrac{p}{\rho}+\phi} =\cfrac{1}{\rho}\cfrac{\p p}{\p t}+\cfrac{\p \phi}{\p t}. \eex$$ 

目录
相关文章
[物理学与PDEs]第2章第1节 理想流体力学方程组 1.4 一维理想流体力学方程组
1.  一维理想流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t}(\rho u) +\cfrac{\p}{\p x}(\rho u^2+p)&=\rho F,\\ \cf...
807 0
|
机器学习/深度学习
[物理学与PDEs]第5章习题2 Jacobian 的物质导数
验证 (3. 6) 式, 即证明 $$\bex \cfrac{\rd J}{\rd t}=J\Div_y {\bf v}. \eex$$   证明: $$\beex \bea \cfrac{\rd J}{\rd t} &=\cfrac{\rd }{\rd t}|{\bf F}|\\ &=\cfr...
603 0
|
Perl
[物理学与PDEs]第3章习题4 理想磁流体的能量守恒方程
试证明: 对理想磁流体, 能量守恒方程 (4. 14) 可以写为如下形式: $$\beex \bea \cfrac{\p}{\p t}&\sex{\rho e+\cfrac{1}{2}\rho u^2 +\cfrac{1}{2}\mu_0H^2}\\ +\sum_{k=1}^3 \cfrac{\p}...
900 0
[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程
试证明: 利用连续性方程, 可将动量方程 (2. 14) 及未燃流体质量平衡方程 (2. 16) 分别化为 (2. 19) 与 (2. 20) 的形式.   证明: 注意到 $$\beex \bea \cfrac{\p}{\p t}(\rho{\bf u}) +\Div(\rho{\bf u}\...
762 0
[物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿流线的一个守恒量
设定常 (即 $\cfrac{\p {\bf u}}{\p t}={\bf 0}$)、不可压缩 (设 $\rho=1$) 的理想流体所受的体积力仅为重力. 又设磁场满足条件: $({\bf H}\cdot\n){\bf H}={\bf 0}$.
785 0
|
资源调度 关系型数据库 Windows
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.2 考虑到电磁场的存在对流体力学方程组的修正
1.  连续性方程 $$\bex \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})=0.  \eex$$     2.  动量守恒方程 $$\bex \cfrac{\p }{\p t}(\rho{\bf u}) +\Div(\rho {\bf u}\otimes{...
751 0
[物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程
试证明: 利用连续性方程及动量方程, 能量守恒方程 (2. 15) 可化为 (2. 21) 的形式.   证明: 注意到 $$\beex \bea &\quad\cfrac{\p}{\p t}\sex{\cfrac{1}{2}\rho u^2} +\Div\sez{\cfrac{1}{2}\rh...
806 0
|
资源调度
[物理学与PDEs]第3章习题3电磁场的矢势在 Lorentz 规范下满足的方程
设 $\phi$ 及 ${\bf A}$ 分别为电磁场的标势及矢势 (见第一章 $\S$ 6). 试证明: 若 $\phi$ 及 ${\bf A}$ 满足条件 $$\bex \phi+\cfrac{1}{\sigma \mu_0}\Div{\bf A}=0, \eex$$ 则方程 (2.
638 0
[物理学与PDEs]第3章习题1 只有一个非零分量的磁场
设磁场 ${\bf H}$ 只有一个非零分量, 试证明 $$\bex ({\bf H}\cdot\n){\bf H}={\bf 0}. \eex$$   证明: 不妨设 ${\bf H}=(0,0,H_3)^T$, 则 $$\bex \Div{\bf H}=0\ra \cfrac{\p H_3}{\p x_3}=0.
577 0
|
关系型数据库 RDS
[物理学与PDEs]第2章习题5 正应力的平均值
设流场中流体的应力张量为 ${\bf P}=(p_{ij})$. 试证明: 在以某点为中心, $r$ 为半径的球面 $S_r$ 上的法向应力分量的平均值, 在 $r\to 0$ 时的极限为该点正应力的平均值, 即成立 $$\bex \lim_{r\to 0}\cfrac{1}{4\pi r^2}\i...
689 0
下一篇
无影云桌面