[物理学与PDEs]第2章第1节 理想流体力学方程组 1.4 一维理想流体力学方程组

简介: 1.  一维理想流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t}(\rho u) +\cfrac{\p}{\p x}(\rho u^2+p)&=\rho F,\\ \cf...

1.  一维理想流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t}(\rho u) +\cfrac{\p}{\p x}(\rho u^2+p)&=\rho F,\\ \cfrac{\p}{\p t}\sex{\rho e+\cfrac{1}{2}\rho u^2} +\cfrac{\p}{\p x}\sez{\sex{ \rho e+\cfrac{1}{2}\rho u^2+p }u}&=\rho Fu; \eea \eeex$$ 或 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p u}{\p t}+u\cfrac{\p u}{\p x}+\cfrac{1}{\rho }\cfrac{\p p}{\p x}&=F,\\ \cfrac{\p S}{\p t}+u\cfrac{\p S}{\p x}&=0; \eea \eeex$$ 再或 $$\beex \bea A(t,x,U)\cfrac{\p U}{\p t}+B(t,x,U)\cfrac{\p U}{\p x} =F(t,x,U), \eea \eeex$$ 其中 $$\bex A(t,x,U)=I,\quad B=\sex{\ba{ccc} u&\rho&0\\ \cfrac{c^2}{\rho}&u&\cfrac{p_S}{\rho}\\ 0&0&u \ea},\quad F=\sex{\ba{c}0\\F\\0 \ea}. \eex$$

 

2.  一阶拟线性双曲组

 

(1)   对一阶拟线性 PDE $$\bee\label{2_1_sq} A(t,x,U)\cfrac{\p U}{\p t}+B(t,x,U)\cfrac{\p U}{\p x} =F(t,x,U), \eee$$ 若对 $\forall\ (t,x,U)$, 特征方程 $$\bex |B-\lm A|=0 \eex$$ 有 $n$ 个实根 $$\bex \lm_1(t,x,U),\cdots,\lm_n(t,x,U), \eex$$ 且相应的广义左特征向量 $$\bex \eta^i:\ \eta^iB=\lm_i\eta^iA \eex$$ 构成完全组 $(|\eta^i_j|\neq 0)$. 则称 \eqref{2_1_sq} 为双曲型方程组.

 

(2)   若 $$\bex \lm_1(t,x,U)<\lm_2(t,x,U)<\cdots<\lm_n(t,x,U), \eex$$ 则称 \eqref{2_1_sq} 为严格双曲型方程组.

 

(3)   若曲线 $x=x(t)$ 满足 $$\bex \sev{B-\cfrac{\rd x}{\rd t}A}=0, \eex$$ 则称其为特征曲线.

 

(4)   例: 在非真空区域, 一维理想流体力学方程组为严格双曲型.

 

3.  均熵流 ($S=\const$): $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p }{\p x}(\rho u)&=0,\\ \cfrac{\p u}{\p t}+u\cfrac{\p u}{\p x} +\cfrac{c^2}{\rho}\cfrac{\p \rho}{\p x}&=F. \eea \eeex$$ 

目录
相关文章
|
关系型数据库 Ruby Windows
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.2 反应流体力学方程组形式的化约
1.  粘性热传导反应流体力学方程组 $$\beex \bea \cfrac{\rd \rho}{\rd t}&+\rho \Div{\bf u}=0,\\ \cfrac{\rd Z}{\rd t}&=-\bar k(\rho,p,Z)Z,\\ \cfrac{\rd {\bf u}}{\rd t}&...
671 0
|
Windows
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.1 粘性热传导反应流体力学方程组
1.  记号: $Z=Z(t,{\bf x})$ 表示未燃气体在微团中所占的百分比 ($Z=1$ 表示完全未燃烧; $Z=0$ 表示完全燃烧).     2.  物理化学   (1)  燃烧过程中, 通过化学反应释放能量; 而不仅仅需要考虑单位质量的内能 (分子的动能与势能), 也要考虑化...
642 0
[物理学与PDEs]第3章习题5 一维理想磁流体力学方程组的数学结构
试将一维理想磁流体力学方程组 (5. 10)-(5. 16) 化为一阶拟线性对称双曲组的形式. 解答: 由 (5. 12),(5. 16) 知 $$\beex \bea 0&=\cfrac{\p p}{\p \rho}\sex{\cfrac{\p \rho}{\p t}+u_1\cfrac{\p ...
784 0
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.4 反应流体力学方程组的数学结构
1.  粘性热传导反应流体力学方程组是拟线性对称双曲 - 抛物耦合组.     2.  理想反应流体力学方程组是一阶拟线性对称双曲组 (取 ${\bf u},p,S,Z$ 为未知函数).     3.  右端项具有间断性.
693 0
|
资源调度
[物理学与PDEs]第3章第4节 磁流体力学方程组的数学结构
1.  在流体存在粘性、热传导及 $\sigma\neq \infty$ 时, 磁流体力学方程组是一个拟线性对称双曲 - 抛物耦合组.     2.  在流体存在粘性、热传导但 $\sigma=\infty$ 时, 磁流体力学方程组是一个拟线性对称双曲 - 抛物耦合组.
744 0
|
资源调度 关系型数据库 Windows
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.2 考虑到电磁场的存在对流体力学方程组的修正
1.  连续性方程 $$\bex \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})=0.  \eex$$     2.  动量守恒方程 $$\bex \cfrac{\p }{\p t}(\rho{\bf u}) +\Div(\rho {\bf u}\otimes{...
747 0
[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程
试证明: 利用连续性方程, 可将动量方程 (2. 14) 及未燃流体质量平衡方程 (2. 16) 分别化为 (2. 19) 与 (2. 20) 的形式.   证明: 注意到 $$\beex \bea \cfrac{\p}{\p t}(\rho{\bf u}) +\Div(\rho{\bf u}\...
761 0
[物理学与PDEs]第3章习题6 Lagrange 坐标下的一维理想磁流体力学方程组的数学结构
试讨论 Lagrange 形式下的一维理想磁流体力学方程组 (5. 33)-(5. 39) 的类型.   解答: 由 (5. 33), (5. 39) 知 $$\bex 0=\cfrac{\p p}{\p \tau}\sex{\cfrac{\p \tau}{\p t'}-\cfrac{\p u_...
684 0
|
算法框架/工具
[物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件
写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 (见第二章 $\S 4$), 并证明越过强间断线, 函数 $Z$ 保持连续.
848 0
|
算法框架/工具
[物理学与PDEs]第4章习题3 一维理想反应流体力学方程组的数学结构
证明: Euler 坐标系下的一维反应流体力学方程组 (3. 10)-(3. 13) 也是一个一阶拟线性双曲型方程组. 证明: 由 (3. 10), (3. 12), (3. 13) 知 $$\bex \cfrac{1}{\rho c^2}\cfrac{\p p}{\p t} +\cfrac{u}{\rho c^2}\cfrac{\p p}{\p x}+\cfrac{\p u}{\p x}=0.
852 0