[物理学与PDEs]第2章第2节 粘性流体力学方程组 2.3 广义 Newton 法则---本构方程

简介: 1.  ${\bf P}=(p_{ij})$, 而 $$\bex p_{ij}=-p\delta_{ij}+\tau_{ij}, \eex$$ 其中 $\tau_{ij}$ 对应于摩擦切应力.     2.

1.  ${\bf P}=(p_{ij})$, 而 $$\bex p_{ij}=-p\delta_{ij}+\tau_{ij}, \eex$$ 其中 $\tau_{ij}$ 对应于摩擦切应力.

 

 

2.  由于内摩擦力只与相对运动有关, 而 $\tau_{ij}$ 与速度无关, 而只与速度梯度有关, 且为线性的 (实验已很好的证实): $$\bex \tau_{ij}=c_{ijkl}\cfrac{\p u_k}{\p x_l}. \eex$$ 由于 $(\tau_{ij})$ 和 $\sex{\cfrac{\p u_k}{\p x_l}}$ 均为二阶张量, 而由张量识别定理, $(c_{ijkl})$ 为四阶张量. 又由 $p_{ij}$ 而 $\tau_{ij}$ 对称知 $$\bex c_{ijkl}=c_{jikl}. \eex$$

 

 

3.  设流体各向同性, 则 $c_{ijkl}$ 为各向同性张量, 有形式 $$\bex c_{ijkl}=\lm \delta_{ij}\delta_{kl} +\alpha \delta_{ik}\delta_{jl} +\beta\delta_{il}\delta_{jk}. \eex$$ 令 $\alpha=\mu+\nu$, $\beta=\mu-\nu$, 则由 $c_{ijkl}=c_{jikl}$ 知 $$\bex c_{ijkl}=\lm \delta_{ij}\delta_{kl} +\mu\sex{\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk}}. \eex$$ 由此, $c_{ijkl}=c_{ijlk}$, $$\bee\label{2_2_3_tau} \tau_{ij}=\lm \Div{\bf u}\delta_{ij}+2\mu s_{ij},\quad s_{ij}=\cfrac{1}{2}\sex{\cfrac{\p u_i}{\p x_j}+\cfrac{\p u_j}{\p x_i}}, \eee$$$$\bee\label{2_2_3_p} p_{ij}=(-p+\lm \Div{\bf u})\delta_{ij}+2\mu s_{ij}, \eee$$$$\bex {\bf P}=(-p+\lm \Div{\bf u}){\bf I}+2\mu {\bf S}. \eex$$

 

 

4.  $\lm$, $\mu$ 的物理意义

 

 

(1)  考虑沿 $x_1$ 方向的剪切运动 $$\bex u_1=u_1(x_3),\quad u_2=u_3=0.  \eex$$ 则由 \eqref{2_2_3_p}, $$\bex p_{13}=\mu \cfrac{\p u_1}{\p x_3}. \eex$$ 这就是 Newton 法则. 称 $\mu$ 为第一粘性系数 (动力学粘性系数).

 

 

(2)  由 \eqref{2_2_3_tau}, $$\bex \cfrac{1}{3}\sum_{i=1}^3 \tau_{ii} =\sex{\lm+\cfrac{2}{3}\mu }\Div{\bf u} =\sex{\lm+\cfrac{2}{3}\mu}\cfrac{1}{\tau}\cfrac{\rd \tau}{\rd t}\quad\sex{\tau=\cfrac{1}{\rho}:\mbox{ 比容}}. \eex$$ 记 $$\bex \mu'=\lm+\cfrac{2}{3}\mu, \eex$$ 则其为平均摩擦正应力与体积变化率之比, 描述流体运动过程中由膨胀或收缩引起的平均摩擦正应力的变换; 称为第二粘性系数 (膨胀粘性系数).

 

 

5.  总结:

 

 

(1)  应力张量---本构方程: $$\bex p_{ij}=-p\delta_{ij}+ 2\mu\sex{s_{ij}-\cfrac{1}{3}\Div{\bf u}\delta_{ij}} +\mu'\Div{\bf u} \delta_{ij}. \eex$$

 

 

(2)  广义Newton 法则: $$\bex \tau_{ij}=2\mu\sex{s_{ij}-\cfrac{1}{3}\Div{\bf u}\delta_{ij}} +\mu'\Div{\bf u} \delta_{ij}, \eex$$ 其中 $\mu>0$, $\mu'\geq 0$.

 

目录
相关文章
[物理学与PDEs]第2章第1节 理想流体力学方程组 1.4 一维理想流体力学方程组
1.  一维理想流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t}(\rho u) +\cfrac{\p}{\p x}(\rho u^2+p)&=\rho F,\\ \cf...
807 0
|
消息中间件
[物理学与PDEs]第5章习题4 广义 Hookean 定律的张量的对称性
设材料是超弹性的, 并设参考构形为自然状态, 证明由线性化得到的张量 ${\bf A}=(a_{ijkl})=\sex{2\cfrac{\p \bar p_{ij}}{c_{kl}}}$ 具有以下的对称性: $$\bex a_{ijkl}=a_{klij}.
565 0
[物理学与PDEs]第5章习题9 伴随矩阵的特征值
设 $3\times 3$ 阵 ${\bf A}$ 的特征值为 $\lm_1,\lm_2,\lm_3$, 证明 $\cof {\bf A}$ 的特征值为 $$\bex \lm_2\lm_3,\quad \lm_3\lm_1,\quad \lm_1\lm_2.
711 0
|
Windows
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.1 粘性热传导反应流体力学方程组
1.  记号: $Z=Z(t,{\bf x})$ 表示未燃气体在微团中所占的百分比 ($Z=1$ 表示完全未燃烧; $Z=0$ 表示完全燃烧).     2.  物理化学   (1)  燃烧过程中, 通过化学反应释放能量; 而不仅仅需要考虑单位质量的内能 (分子的动能与势能), 也要考虑化...
644 0
|
关系型数据库 Ruby Windows
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.2 反应流体力学方程组形式的化约
1.  粘性热传导反应流体力学方程组 $$\beex \bea \cfrac{\rd \rho}{\rd t}&+\rho \Div{\bf u}=0,\\ \cfrac{\rd Z}{\rd t}&=-\bar k(\rho,p,Z)Z,\\ \cfrac{\rd {\bf u}}{\rd t}&...
671 0
|
算法框架/工具
[物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件
写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 (见第二章 $\S 4$), 并证明越过强间断线, 函数 $Z$ 保持连续.
850 0
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.4 反应流体力学方程组的数学结构
1.  粘性热传导反应流体力学方程组是拟线性对称双曲 - 抛物耦合组.     2.  理想反应流体力学方程组是一阶拟线性对称双曲组 (取 ${\bf u},p,S,Z$ 为未知函数).     3.  右端项具有间断性.
694 0
[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程
试证明: 利用连续性方程, 可将动量方程 (2. 14) 及未燃流体质量平衡方程 (2. 16) 分别化为 (2. 19) 与 (2. 20) 的形式.   证明: 注意到 $$\beex \bea \cfrac{\p}{\p t}(\rho{\bf u}) +\Div(\rho{\bf u}\...
762 0
[物理学与PDEs]第3章习题6 Lagrange 坐标下的一维理想磁流体力学方程组的数学结构
试讨论 Lagrange 形式下的一维理想磁流体力学方程组 (5. 33)-(5. 39) 的类型.   解答: 由 (5. 33), (5. 39) 知 $$\bex 0=\cfrac{\p p}{\p \tau}\sex{\cfrac{\p \tau}{\p t'}-\cfrac{\p u_...
684 0
|
Perl
[物理学与PDEs]第3章习题4 理想磁流体的能量守恒方程
试证明: 对理想磁流体, 能量守恒方程 (4. 14) 可以写为如下形式: $$\beex \bea \cfrac{\p}{\p t}&\sex{\rho e+\cfrac{1}{2}\rho u^2 +\cfrac{1}{2}\mu_0H^2}\\ +\sum_{k=1}^3 \cfrac{\p}...
900 0
下一篇
无影云桌面