[物理学与PDEs]第3章习题5 一维理想磁流体力学方程组的数学结构

简介: 试将一维理想磁流体力学方程组 (5. 10)-(5. 16) 化为一阶拟线性对称双曲组的形式. 解答: 由 (5. 12),(5. 16) 知 $$\beex \bea 0&=\cfrac{\p p}{\p \rho}\sex{\cfrac{\p \rho}{\p t}+u_1\cfrac{\p ...

试将一维理想磁流体力学方程组 (5. 10)-(5. 16) 化为一阶拟线性对称双曲组的形式.

解答: 由 (5. 12),(5. 16) 知 $$\beex \bea 0&=\cfrac{\p p}{\p \rho}\sex{\cfrac{\p \rho}{\p t}+u_1\cfrac{\p \rho}{\p x}+\rho \cfrac{\p u_1}{\p x}} +\cfrac{\p\rho}{\p S}\sex{\cfrac{\p S}{\p t}+u_1\cfrac{\p S}{\p x}}\\ &=\cfrac{\p p}{\p t}+u_1\cfrac{\p p}{\p x}+\tilde c^2\rho \cfrac{\p u_1}{\p x}, \eea \eeex$$ 而 $$\bex \cfrac{1}{\tilde c^2\rho }\cfrac{\p p}{\p t}+\cfrac{u_1}{\tilde c^2\rho}\cfrac{\p p}{\p x}+\cfrac{\p u_1}{\p x}=0.  \eex$$ 于是 (5. 10)-(5. 16) 为 $$\beex \bea \mu_0\cfrac{\p H_2}{\p t}+\mu_0u_1\cfrac{\p H_2}{\p x} +\mu_0H_2\cfrac{\p u_1}{\p x} -\mu_0H_1\cfrac{\p u_2}{\p x}&=0,\\ \mu_0\cfrac{\p H_3}{\p t} +\mu_0u_1\cfrac{\p H_3}{\p x} +\mu_0H_3\cfrac{\p u_1}{\p x} -\mu_0H_1\cfrac{\p u_3}{\p x}&=0,\\ \cfrac{1}{\tilde c^2\rho }\cfrac{\p p}{\p t}+\cfrac{u_1}{\tilde c^2\rho}\cfrac{\p p}{\p x}+\cfrac{\p u_1}{\p x}&=0,\\ \cfrac{1}{\rho}\cfrac{\p u_1}{\p t} +\cfrac{u_1}{\rho}\cfrac{\p u_1}{\p t} +\cfrac{\p p}{\p x} +\mu_0\sex{H_2\cfrac{\p H_2}{\p x}+H_3\cfrac{\p H_3}{\p x}}&=F_1,\\ \rho \cfrac{\p u_2}{\p t} +\rho u_1\cfrac{\p u_2}{\p x}-\mu_0H_1\cfrac{\p H_2}{\p x}&=F_2,\\ \rho \cfrac{\p u_3}{\p t}+\rho u_1\cfrac{\p u_3}{\p x} -\mu_0H_1\cfrac{\p H_3}{\p x}&=F_3,\\ \cfrac{\p S}{\p t}+u_1\cfrac{\p S}{\p x}&=0; \eea \eeex$$ 可写成 $$\bex A(U)\cfrac{\p U}{\p t}+B(U)\cfrac{\p U}{\p x}=C, \eex$$ 其中 $$\beex \bea U&=(H_2,H_3,p,u_1,u_2,u_3,S)^T,\\ A(U)&=\diag(\mu_0,\mu_0,\cfrac{1}{\tilde c^2\rho},\cfrac{1}{\rho},\rho,\rho,1),\\ B(U)&=\sex{\ba{ccccccc} \mu_0u_1&0&0&\mu_0H_2&-\mu_0H_1&0&0\\ 0&\mu_0u_1&0&\mu_0H_3&0&-\mu_0H_1&0\\ 0&0&\cfrac{u_1}{\tilde c^2 \rho}&1&0&0&0\\ \mu_0H_2&\mu_0H_3&1&\cfrac{u_1}{\rho}&0&0&0\\ -\mu_0H_1&0&0&0&\rho u_1&0&0\\ 0&-\mu_0H_1&0&0&0&\rho u_1&0\\ 0&0&0&0&0&0&u_1 \ea},\\ C&=(0,0,0,F_1,F_2,F_3,0)^T. \eea \eeex$$ 

目录
相关文章
[物理学与PDEs]第2章第1节 理想流体力学方程组 1.4 一维理想流体力学方程组
1.  一维理想流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t}(\rho u) +\cfrac{\p}{\p x}(\rho u^2+p)&=\rho F,\\ \cf...
807 0
|
消息中间件
[物理学与PDEs]第5章习题4 广义 Hookean 定律的张量的对称性
设材料是超弹性的, 并设参考构形为自然状态, 证明由线性化得到的张量 ${\bf A}=(a_{ijkl})=\sex{2\cfrac{\p \bar p_{ij}}{c_{kl}}}$ 具有以下的对称性: $$\bex a_{ijkl}=a_{klij}.
564 0
|
资源调度
[物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性
试证明: 在物质描述下, 动量矩守恒定律等价于第二 Piola 应力张量的对称性.   证明: 由 $$\beex \bea \int_{G_t}\rho\sex{{\bf y}\times\cfrac{\rd {\bf v}}{\rd t}}\rd y &=\int_{G_0} \rho_0\...
1039 0
[物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组     1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\rho_0{\bf b}\\ &=\rho_0\cfrac{\p}{\p t}\sex{\cfra...
909 0
[物理学与PDEs]第5章习题9 伴随矩阵的特征值
设 $3\times 3$ 阵 ${\bf A}$ 的特征值为 $\lm_1,\lm_2,\lm_3$, 证明 $\cof {\bf A}$ 的特征值为 $$\bex \lm_2\lm_3,\quad \lm_3\lm_1,\quad \lm_1\lm_2.
711 0
[物理学与PDEs]第5章习题1 矩阵的极分解
证明引理 2. 1.    证明:   (1)  先证明存在正交阵 ${\bf P},{\bf Q}$ 及对角阵 ${\bf D}$ 使得 $$\bex {\bf F}={\bf P}{\bf D}{\bf Q}.
834 0
|
算法框架/工具
[物理学与PDEs]第4章习题3 一维理想反应流体力学方程组的数学结构
证明: Euler 坐标系下的一维反应流体力学方程组 (3. 10)-(3. 13) 也是一个一阶拟线性双曲型方程组. 证明: 由 (3. 10), (3. 12), (3. 13) 知 $$\bex \cfrac{1}{\rho c^2}\cfrac{\p p}{\p t} +\cfrac{u}{\rho c^2}\cfrac{\p p}{\p x}+\cfrac{\p u}{\p x}=0.
852 0
[物理学与PDEs]第3章习题6 Lagrange 坐标下的一维理想磁流体力学方程组的数学结构
试讨论 Lagrange 形式下的一维理想磁流体力学方程组 (5. 33)-(5. 39) 的类型.   解答: 由 (5. 33), (5. 39) 知 $$\bex 0=\cfrac{\p p}{\p \tau}\sex{\cfrac{\p \tau}{\p t'}-\cfrac{\p u_...
684 0
|
资源调度
[物理学与PDEs]第3章第4节 磁流体力学方程组的数学结构
1.  在流体存在粘性、热传导及 $\sigma\neq \infty$ 时, 磁流体力学方程组是一个拟线性对称双曲 - 抛物耦合组.     2.  在流体存在粘性、热传导但 $\sigma=\infty$ 时, 磁流体力学方程组是一个拟线性对称双曲 - 抛物耦合组.
744 0
|
算法框架/工具
[物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件
写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 (见第二章 $\S 4$), 并证明越过强间断线, 函数 $Z$ 保持连续.
848 0