[物理学与PDEs]第2章第1节 理想流体力学方程组 1.3 理想流体力学方程组的数学结构

简介: 1.  局部音速 $c$: $c^2=\cfrac{\p p}{\p \rho}>0$.     2.  将理想流体力学方程组 $$\beex \bea \rho\cfrac{\p {\bf u}}{\p t} +(\rho {\bf u}\cdot\n){\bf u}+\n p&=\rho{...

1.  局部音速 $c$: $c^2=\cfrac{\p p}{\p \rho}>0$.

 

 

2.  将理想流体力学方程组 $$\beex \bea \rho\cfrac{\p {\bf u}}{\p t} +(\rho {\bf u}\cdot\n){\bf u}+\n p&=\rho{\bf F},\\ \cfrac{1}{\rho c^2}\cfrac{\p p}{\p t} +\n\cdot{\bf u}+\cfrac{1}{\rho c^2}({\bf u}\cdot\n)p&=0,\\ \cfrac{\p S}{\p t}+({\bf u}\cdot\n)S&=0 \eea \eeex$$ 写成 $$\bee\label{2_1_2_dc} A_0\cfrac{\p U}{\p t} +\sum_{i=1}^3 A_i\cfrac{\p U}{\p x_i}=C, \eee$$ 其中 $U=(u_1,u_2,u_3,p,S)^T$, 则有 $$\beex \bea A_0=\sex{\ba{ccccc} \rho &&&&\\ &\rho&&&\\ &&\rho&&\\ &&&\cfrac{1}{\rho c^2}&\\ &&&&1 \ea},&\quad A_1=\sex{\ba{ccccc} \rho u_1&&&1&\\ &\rho u_1&&&\\ &&\rho u_1&&\\ 1&&&\cfrac{u_1}{\rho c^2}&\\ &&&&u_1 \ea},\\ A_2=\sex{\ba{ccccc} \rho u_2&&&&\\ &\rho u_2&&1&\\ &&\rho u_2&&\\ &1&&\cfrac{u_2}{\rho c^2}&\\ &&&&u_2 \ea},&\quad A_3=\sex{\ba{ccccc} \rho u_3&&&&\\ 0&\rho u_3&&&\\ &&\rho u_3&1&\\ &&1&\cfrac{u_3}{\rho c^2}&\\ &&&&u_3 \ea},\\ C=(\rho F_1,\rho F_2,\rho F_3,0,0)^T.& \eea \eeex$$

 

 

3.  当 $\rho>0$ 时, \eqref{2_1_2_dc} 为一阶拟线性对称双曲型偏微分方程组. 而可考虑 Cauchy 问题、初-边值问题.

 

 

4.  理想流体力学方程组可化为一阶拟线性对称双曲组 $$\bex \cfrac{\p L^0_{v_i}}{\p t} +\sum_{k=1}^3 \cfrac{\p }{\p x_k}L^k_{v_i}=0,\quad i=0,1,\cdot,4.  \eex$$ 其中 $$\bex L_0=-\cfrac{p}{T},\quad L^k=-\cfrac{p}{T}u_k\ (k=1,2,3). \eex$$ 这里,

 

 

(1)   $L_{v_iv_j}$ 为对称正定阵.

 

 

(2)   $v_i\ (i=0,1,\cdots,4)$ 及 $L$ 为 $\rho,\rho u_1,\rho u_2,\rho u_3, \rho e+\cfrac{1}{2}\rho u^2$ 及 $\rho S$ 的 Legendre 变换.

 

 

5.  一般的守恒律方程组可化为一阶对称双曲组的一个充要条件

设有守恒律方程组 $$\bee\label{2_1_shl} \cfrac{\p U}{\p t}+\sum_{k=1}^3 \cfrac{\p}{\p x_k} B^k(U)=0, \eee$$ 其中 $$\bex U=(u_1,\cdots,u_n)^T,\quad B^k=(b^k_1,\cdots,b^k_n)^T. \eex$$ 则 \eqref{2_1_shl} 可通过未知函数变换 $$\bex U=U(V),\quad (u_i=u_i(v_1,\cdots,v_n),\ i=1,\cdots,n) \eex$$ 化为守恒律形式的一阶对称双曲组的充要条件为: 存在严格凸的标量 $W(U)$ 与向量函数 $H=(h_1(U),h_2(U),h_3(U))^T$, 使成立如下附加守恒律 $$\bex \cfrac{\p }{\p t}W(U)+\sum_{k=1}^3 \cfrac{\p}{\p x_k}h_k(U)=0.  \eex$$ 这里, $W(U)$ 称为 \eqref{2_1_shl} 的熵函数, $H(U)$ 称为熵流函数. 

目录
相关文章
[物理学与PDEs]第2章第1节 理想流体力学方程组 1.4 一维理想流体力学方程组
1.  一维理想流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t}(\rho u) +\cfrac{\p}{\p x}(\rho u^2+p)&=\rho F,\\ \cf...
818 0
[物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组     1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\rho_0{\bf b}\\ &=\rho_0\cfrac{\p}{\p t}\sex{\cfra...
919 0
|
算法框架/工具
[物理学与PDEs]第4章习题3 一维理想反应流体力学方程组的数学结构
证明: Euler 坐标系下的一维反应流体力学方程组 (3. 10)-(3. 13) 也是一个一阶拟线性双曲型方程组. 证明: 由 (3. 10), (3. 12), (3. 13) 知 $$\bex \cfrac{1}{\rho c^2}\cfrac{\p p}{\p t} +\cfrac{u}{\rho c^2}\cfrac{\p p}{\p x}+\cfrac{\p u}{\p x}=0.
857 0
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.4 反应流体力学方程组的数学结构
1.  粘性热传导反应流体力学方程组是拟线性对称双曲 - 抛物耦合组.     2.  理想反应流体力学方程组是一阶拟线性对称双曲组 (取 ${\bf u},p,S,Z$ 为未知函数).     3.  右端项具有间断性.
704 0
|
关系型数据库 Ruby Windows
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.2 反应流体力学方程组形式的化约
1.  粘性热传导反应流体力学方程组 $$\beex \bea \cfrac{\rd \rho}{\rd t}&+\rho \Div{\bf u}=0,\\ \cfrac{\rd Z}{\rd t}&=-\bar k(\rho,p,Z)Z,\\ \cfrac{\rd {\bf u}}{\rd t}&...
679 0
|
算法框架/工具
[物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件
写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 (见第二章 $\S 4$), 并证明越过强间断线, 函数 $Z$ 保持连续.
858 0
[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程
试证明: 利用连续性方程, 可将动量方程 (2. 14) 及未燃流体质量平衡方程 (2. 16) 分别化为 (2. 19) 与 (2. 20) 的形式.   证明: 注意到 $$\beex \bea \cfrac{\p}{\p t}(\rho{\bf u}) +\Div(\rho{\bf u}\...
769 0
[物理学与PDEs]第3章习题5 一维理想磁流体力学方程组的数学结构
试将一维理想磁流体力学方程组 (5. 10)-(5. 16) 化为一阶拟线性对称双曲组的形式. 解答: 由 (5. 12),(5. 16) 知 $$\beex \bea 0&=\cfrac{\p p}{\p \rho}\sex{\cfrac{\p \rho}{\p t}+u_1\cfrac{\p ...
791 0
|
Windows
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.1 粘性热传导反应流体力学方程组
1.  记号: $Z=Z(t,{\bf x})$ 表示未燃气体在微团中所占的百分比 ($Z=1$ 表示完全未燃烧; $Z=0$ 表示完全燃烧).     2.  物理化学   (1)  燃烧过程中, 通过化学反应释放能量; 而不仅仅需要考虑单位质量的内能 (分子的动能与势能), 也要考虑化...
649 0

热门文章

最新文章