[物理学与PDEs]第3章第3节 电导率 $\sigma$ 为无穷时的磁流体力学方程组 3.1 电导率 $\sigma$ 为无穷时的磁流体力学方程组

简介: 电导率 $\sigma$ 为无穷时的磁流体力学方程组 $$\beex \bea \cfrac{\p {\bf H}}{\p t} &-\rot({\bf u}\times{\bf H})={\bf 0},\\ \Div&{\bf H}=0,\\ \cfrac{\p \rho}{\p t}&+\Div...

电导率 $\sigma$ 为无穷时的磁流体力学方程组 $$\beex \bea \cfrac{\p {\bf H}}{\p t} &-\rot({\bf u}\times{\bf H})={\bf 0},\\ \Div&{\bf H}=0,\\ \cfrac{\p \rho}{\p t}&+\Div(\rho {\bf u})=0,\\ \cfrac{\p (\rho{\bf u})}{\p t}&+\Div(\rho{\bf u}\times{\bf u}-{\bf P}) -\mu_0\rot{\bf H}\times{\bf H}=\rho {\bf F},\\ \cfrac{\p}{\p t}&\sex{\rho e+\cfrac{1}{2}\rho u^2+\cfrac{1}{2}\mu_0 H^2} +\Div\sez{\sex{\rho e+\cfrac{1}{2}\rho u^2}{\bf u}-{\bf P} {\bf u}}\\ &-\Div\sez{\mu_0({\bf u}\times{\bf H})\times{\bf H}} =\Div(\kappa \n T)+\rho {\bf F}\cdot{\bf u}. \eea \eeex$$

目录
相关文章
[物理学与PDEs]第2章第1节 理想流体力学方程组 1.4 一维理想流体力学方程组
1.  一维理想流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t}(\rho u) +\cfrac{\p}{\p x}(\rho u^2+p)&=\rho F,\\ \cf...
807 0
Newton冷却定理微分数学公式推导
Newton冷却定理微分数学公式推导
1560 0
[物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.1 一维反应流体力学方程组
1、 一维粘性热传导反应流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}&+\cfrac{\p}{\p x}(\rho u)=0,\\ \cfrac{\p}{\p t}(\rho u) &+\cfrac{\p}{\p x}\sez{ \rho u^2+p-\sex{...
767 0
|
关系型数据库 Ruby Windows
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.2 反应流体力学方程组形式的化约
1.  粘性热传导反应流体力学方程组 $$\beex \bea \cfrac{\rd \rho}{\rd t}&+\rho \Div{\bf u}=0,\\ \cfrac{\rd Z}{\rd t}&=-\bar k(\rho,p,Z)Z,\\ \cfrac{\rd {\bf u}}{\rd t}&...
671 0
[物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.2 一维反应流体力学方程组的 Lagrange 形式
1.  一维粘性热传导反应流体力学方程组的 Lagrange 形式 $$\beex \bea \cfrac{\p \tau}{\p t'}-\cfrac{\p u}{\p m}&=0,\\ \cfrac{\p u}{\p t'}+\cfrac{\p p}{\p m}-\cfrac{\p}{\p m}...
785 0
|
Windows
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.1 粘性热传导反应流体力学方程组
1.  记号: $Z=Z(t,{\bf x})$ 表示未燃气体在微团中所占的百分比 ($Z=1$ 表示完全未燃烧; $Z=0$ 表示完全燃烧).     2.  物理化学   (1)  燃烧过程中, 通过化学反应释放能量; 而不仅仅需要考虑单位质量的内能 (分子的动能与势能), 也要考虑化...
643 0
|
资源调度 关系型数据库 RDS
[物理学与PDEs]第3章第3节 电导率 $\sigma$ 为无穷时的磁流体力学方程组 3.2 向量场过任一随流体运动的曲面的通量对时间的微式及其应用
1.  $$\bex \cfrac{\rd}{\rd t}\int_S {\bf a}\cdot{\bf n}\rd S =\int_S \sez{ \cfrac{\p {\bf a}}{\p t} +(\Div{\bf a}){\bf u}-\rot({\bf u}\times{\bf a}) }\cdot {\bf n}\rd S.
742 0
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.3 混合气体状态方程
1.  记号与假设   (1)  已燃气体的化学能为 $0$.   (2)  单位质量的未燃气体的化学能为 $g_0>0$.     2.  对多方气体 (理想气体当 $T$ 不高时可近似认为), $$\bex p=(\gamma-1)e^\frac{S-S_0}{c_V}\rho^\...
665 0
|
资源调度
[物理学与PDEs]第3章第3节 电导率 $\sigma$ 为无穷时的磁流体力学方程组 3.3 磁场线``冻结''原理
磁场线``冻结''原理: 在 $\sigma=\infty$ 时, 初始时刻分布在同一磁场线上的质点, 在运动过程中会一直保持在同一磁场线上, 即磁场线好像``冻结''在物质上. 事实上, $\cfrac{{\bf H}}{\rho}$, $\rd {\bf r}$ 满足同一线性齐次 ODE 组:...
754 0
[物理学与PDEs]第3章第5节 一维磁流体力学方程组 5.2 一维磁流体力学方程组的 Lagrange 形式
由 $$\bex \cfrac{\p \rho}{\p t}&+u_1\cfrac{\p \rho}{\p x}+\rho\cfrac{\p u_1}{\p x}=0, \eex$$ 我们可以引进 Lebesgue 坐标 $(t',m)$, 而将一维磁流体力学方程组化为 Lagrange 形式, 而有较简单的形式.
733 0