[物理学与PDEs]第3章第3节 电导率 $\sigma$ 为无穷时的磁流体力学方程组 3.1 电导率 $\sigma$ 为无穷时的磁流体力学方程组

简介: 电导率 $\sigma$ 为无穷时的磁流体力学方程组 $$\beex \bea \cfrac{\p {\bf H}}{\p t} &-\rot({\bf u}\times{\bf H})={\bf 0},\\ \Div&{\bf H}=0,\\ \cfrac{\p \rho}{\p t}&+\Div...

电导率 $\sigma$ 为无穷时的磁流体力学方程组 $$\beex \bea \cfrac{\p {\bf H}}{\p t} &-\rot({\bf u}\times{\bf H})={\bf 0},\\ \Div&{\bf H}=0,\\ \cfrac{\p \rho}{\p t}&+\Div(\rho {\bf u})=0,\\ \cfrac{\p (\rho{\bf u})}{\p t}&+\Div(\rho{\bf u}\times{\bf u}-{\bf P}) -\mu_0\rot{\bf H}\times{\bf H}=\rho {\bf F},\\ \cfrac{\p}{\p t}&\sex{\rho e+\cfrac{1}{2}\rho u^2+\cfrac{1}{2}\mu_0 H^2} +\Div\sez{\sex{\rho e+\cfrac{1}{2}\rho u^2}{\bf u}-{\bf P} {\bf u}}\\ &-\Div\sez{\mu_0({\bf u}\times{\bf H})\times{\bf H}} =\Div(\kappa \n T)+\rho {\bf F}\cdot{\bf u}. \eea \eeex$$

目录
相关文章
[物理学与PDEs]第2章第1节 理想流体力学方程组 1.4 一维理想流体力学方程组
1.  一维理想流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t}(\rho u) +\cfrac{\p}{\p x}(\rho u^2+p)&=\rho F,\\ \cf...
819 0
Newton冷却定理微分数学公式推导
Newton冷却定理微分数学公式推导
1590 0
|
资源调度
[物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性
试证明: 在物质描述下, 动量矩守恒定律等价于第二 Piola 应力张量的对称性.   证明: 由 $$\beex \bea \int_{G_t}\rho\sex{{\bf y}\times\cfrac{\rd {\bf v}}{\rd t}}\rd y &=\int_{G_0} \rho_0\...
1050 0
[物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.1 一维反应流体力学方程组
1、 一维粘性热传导反应流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}&+\cfrac{\p}{\p x}(\rho u)=0,\\ \cfrac{\p}{\p t}(\rho u) &+\cfrac{\p}{\p x}\sez{ \rho u^2+p-\sex{...
774 0
|
资源调度 关系型数据库 RDS
[物理学与PDEs]第3章第3节 电导率 $\sigma$ 为无穷时的磁流体力学方程组 3.2 向量场过任一随流体运动的曲面的通量对时间的微式及其应用
1.  $$\bex \cfrac{\rd}{\rd t}\int_S {\bf a}\cdot{\bf n}\rd S =\int_S \sez{ \cfrac{\p {\bf a}}{\p t} +(\Div{\bf a}){\bf u}-\rot({\bf u}\times{\bf a}) }\cdot {\bf n}\rd S.
750 0
|
资源调度
[物理学与PDEs]第3章第5节 一维磁流体力学方程组 5.1 一维磁流体力学方程组
1.  当磁流体力学方程组中的量只依赖于 $t$ 及一个空间变量时, 该方程组称为一维的.     2.  一维磁流体力学方程组 $$\beex \bea \cfrac{\p H_2}{\p t}& +u_1\cfrac{\p H_2}{\p x} +H_2\cfrac{\p u_1}{\p ...
727 0
|
资源调度
[物理学与PDEs]第3章第3节 电导率 $\sigma$ 为无穷时的磁流体力学方程组 3.3 磁场线``冻结''原理
磁场线``冻结''原理: 在 $\sigma=\infty$ 时, 初始时刻分布在同一磁场线上的质点, 在运动过程中会一直保持在同一磁场线上, 即磁场线好像``冻结''在物质上. 事实上, $\cfrac{{\bf H}}{\rho}$, $\rd {\bf r}$ 满足同一线性齐次 ODE 组:...
764 0
[物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.2 一维反应流体力学方程组的 Lagrange 形式
1.  一维粘性热传导反应流体力学方程组的 Lagrange 形式 $$\beex \bea \cfrac{\p \tau}{\p t'}-\cfrac{\p u}{\p m}&=0,\\ \cfrac{\p u}{\p t'}+\cfrac{\p p}{\p m}-\cfrac{\p}{\p m}...
793 0
|
关系型数据库 Ruby Windows
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.2 反应流体力学方程组形式的化约
1.  粘性热传导反应流体力学方程组 $$\beex \bea \cfrac{\rd \rho}{\rd t}&+\rho \Div{\bf u}=0,\\ \cfrac{\rd Z}{\rd t}&=-\bar k(\rho,p,Z)Z,\\ \cfrac{\rd {\bf u}}{\rd t}&...
679 0