[物理学与PDEs]第3章第2节 磁流体力学方程组 2.2 考虑到电磁场的存在对流体力学方程组的修正

简介: 1.  连续性方程 $$\bex \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})=0.  \eex$$     2.  动量守恒方程 $$\bex \cfrac{\p }{\p t}(\rho{\bf u}) +\Div(\rho {\bf u}\otimes{...

1.  连续性方程 $$\bex \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})=0.  \eex$$

 

 

2.  动量守恒方程 $$\bex \cfrac{\p }{\p t}(\rho{\bf u}) +\Div(\rho {\bf u}\otimes{\bf u}-{\bf P}) -\mu\rot{\bf H}\times{\bf H}=\rho {\bf F}, \eex$$ 或 $$\bex \rho \cfrac{\rd {\bf u}}{\rd t} -\Div{\bf P} -\mu_0\rot{\bf H}\times{\bf H}=\rho {\bf F}. \eex$$

 

 

3.  能量守恒方程 $$\beex \bea \cfrac{\p}{\p t}&\sex{\rho e+\cfrac{1}{2}\rho u^2+\cfrac{1}{2}\mu_0 H^2} +\Div\sez{\sex{\rho e+\cfrac{1}{2}\rho u^2}{\bf u}-{\bf P} {\bf u}}\\ +\Div&\sez{\cfrac{1}{\sigma}\rot{\bf H}\times{\bf H}-\mu_0({\bf u}\times{\bf H})\times{\bf H}} =\Div(\kappa \n T)+\rho {\bf F}\cdot{\bf u}, \eea \eeex$$ 或 $$\bex \rho T\cfrac{\rd S}{\rd t} -\bar \mu \cdot \tr \sex{{\bf S}\cdot\n {\bf u}} -\sex{\bar \mu'-\cfrac{2}{3}\bar \mu}|\Div{\bf u}|^2 -\cfrac{1}{\sigma}|\rot{\bf H}|^2=\Div(\kappa\n T). \eex$$

目录
相关文章
[物理学与PDEs]第2章第1节 理想流体力学方程组 1.4 一维理想流体力学方程组
1.  一维理想流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t}(\rho u) +\cfrac{\p}{\p x}(\rho u^2+p)&=\rho F,\\ \cf...
810 0
|
资源调度 Windows
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.3 磁流体力学方程组
1.  磁流体力学方程组 $$\beex \bea \cfrac{\p {\bf H}}{\p t} &-\rot({\bf u}\times{\bf H})=\cfrac{1}{\sigma\mu_0}\lap{\bf H},\\ \Div&{\bf H}=0,\\ \cfrac{\p \rho}...
795 0
|
资源调度
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.4 不可压情形的磁流体力学方程组
不可压情形的磁流体力学方程组 $$\beex \bea \cfrac{\rd {\bf H}}{\rd t}-({\bf H}\cdot\n){\bf u}&=\cfrac{1}{\sigma\mu_0}\lap {\bf H},\\ \Div{\bf H}&=0,\\ \cfrac{\rd {\b...
840 0
|
资源调度
[物理学与PDEs]第3章第5节 一维磁流体力学方程组 5.1 一维磁流体力学方程组
1.  当磁流体力学方程组中的量只依赖于 $t$ 及一个空间变量时, 该方程组称为一维的.     2.  一维磁流体力学方程组 $$\beex \bea \cfrac{\p H_2}{\p t}& +u_1\cfrac{\p H_2}{\p x} +H_2\cfrac{\p u_1}{\p ...
723 0
|
资源调度
[物理学与PDEs]第3章第4节 磁流体力学方程组的数学结构
1.  在流体存在粘性、热传导及 $\sigma\neq \infty$ 时, 磁流体力学方程组是一个拟线性对称双曲 - 抛物耦合组.     2.  在流体存在粘性、热传导但 $\sigma=\infty$ 时, 磁流体力学方程组是一个拟线性对称双曲 - 抛物耦合组.
751 0
|
Windows
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.1 粘性热传导反应流体力学方程组
1.  记号: $Z=Z(t,{\bf x})$ 表示未燃气体在微团中所占的百分比 ($Z=1$ 表示完全未燃烧; $Z=0$ 表示完全燃烧).     2.  物理化学   (1)  燃烧过程中, 通过化学反应释放能量; 而不仅仅需要考虑单位质量的内能 (分子的动能与势能), 也要考虑化...
645 0
|
关系型数据库 Ruby Windows
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.2 反应流体力学方程组形式的化约
1.  粘性热传导反应流体力学方程组 $$\beex \bea \cfrac{\rd \rho}{\rd t}&+\rho \Div{\bf u}=0,\\ \cfrac{\rd Z}{\rd t}&=-\bar k(\rho,p,Z)Z,\\ \cfrac{\rd {\bf u}}{\rd t}&...
674 0
|
资源调度
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.1 考虑到导电媒质 (等离子体) 的运动对 Maxwell 方程组的修正
1.  Maxwell 方程组 $$\bee\label{3_2_1_Maxwell} \bea \Div{\bf D}&=\rho_f,\\ \rot{\bf E}&=-\cfrac{\p {\bf B}}{\p t},\\ \Div{\bf B}&=0,\\ \rot{\bf H}&=\cfra...
878 0
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.3 混合气体状态方程
1.  记号与假设   (1)  已燃气体的化学能为 $0$.   (2)  单位质量的未燃气体的化学能为 $g_0>0$.     2.  对多方气体 (理想气体当 $T$ 不高时可近似认为), $$\bex p=(\gamma-1)e^\frac{S-S_0}{c_V}\rho^\...
666 0
[物理学与PDEs]第3章第5节 一维磁流体力学方程组 5.2 一维磁流体力学方程组的 Lagrange 形式
由 $$\bex \cfrac{\p \rho}{\p t}&+u_1\cfrac{\p \rho}{\p x}+\rho\cfrac{\p u_1}{\p x}=0, \eex$$ 我们可以引进 Lebesgue 坐标 $(t',m)$, 而将一维磁流体力学方程组化为 Lagrange 形式, 而有较简单的形式.
735 0