[物理学与PDEs]第2章第4节 激波 4.1 间断连接条件

简介: 1.  守恒律方程 $$\bex \cfrac{\p f}{\p t}+\cfrac{\p q}{\p x}=0 \eex$$ 在间断线上应满足 ``间断连接条件'': $$\bex [f]\cfrac{\rd x}{\rd t}=[q].

1.  守恒律方程 $$\bex \cfrac{\p f}{\p t}+\cfrac{\p q}{\p x}=0 \eex$$ 在间断线上应满足 ``间断连接条件'': $$\bex [f]\cfrac{\rd x}{\rd t}=[q]. \eex$$

 

 

2.  对一维理想流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t}(\rho u) +\cfrac{\p}{\p x}(\rho u^2+p)&=\rho F,\\ \cfrac{\p}{\p t}\sex{\rho e+\cfrac{1}{2}\rho u^2} +\cfrac{\p}{\p x}\sez{\sex{ \rho e+\cfrac{1}{2}\rho u^2+p }u}&=\rho Fu, \eea \eeex$$ 其间断连接条件为 $$\beex \bea [\rho]\cfrac{\rd x}{\rd t}&=[\rho u],\\ [\rho u]\cfrac{\rd x}{\rd t}&=[\rho u^2+p],\\ \sez{\rho e+\cfrac{1}{2}\rho u^2}\cfrac{\rd x}{\rd t} &=\sez{\sex{\rho e+\cfrac{1}{2}\rho u^2}u}. \eea \eeex$$ 此称为 Rankine-Hugoniot (R.H.) 条件.

 

 

3.  设 $U=\cfrac{\rd x}{\rd t}$ 为间断的传播速度, 记 $$\bex v_\pm=u_\pm-U, \eex$$ 则 R.H. 条件可化为 $$\beex \bea \rho_-v_-&=\rho_+v_+,\\ \rho_-v_-^2+p_-&= \rho_+v_+^2+p_+,\\ \sex{\rho_-e_-+\cfrac{1}{2}\rho_-v_-^2+p_-}v_-&=\sex{\rho_+e_++\cfrac{1}{2}\rho_+v_+^2+p_+}v_+. \eea \eeex$$

 

 

4.  记 $m=\rho_-v_-=\rho_+v_+$, 则

 

 

(1)  若 $m=0$, 则 $x=x(t)$ 为接触间断 (contact discontinuity), 此时, $$\bex v_-=v_+=0\ra u_+=u_-=U, \eex$$ 该间断线随流体一以同一速度运动, 无流体越过间断线.

 

 

(2)  若 $m\neq 0$, 则 $x=x(t)$ 为激波, 在越过激波时, 由 R.H. 条件可导出各热力学量应满足的方程. 比如 $$\bex H(\tau,p;\tau_0,p_0)\equiv e(\tau,p)-e_0(\tau,p) +\cfrac{1}{2}(p_0+p)(\tau-\tau_0)=0.  \eex$$ 此称为 Hugoniot 方程或热力学激波条件 (只依赖于热力学量 $\tau$, $p$). 另外, $v_-$, $v_+$ 同号. 若同为负号, 则 $u_-,u_+<U$, 而流体自右向左越过激波, 而激波相对于流体来说向右运动, 称为右传播激波; 若同为负号, 则称为左传播激波 (书 P 134).

 

目录
相关文章
|
算法
蓝桥杯-连接乘积(算法提高)
蓝桥杯-连接乘积(算法提高)
|
算法框架/工具 Perl
[家里蹲大学数学杂志]第013期2010年西安偏微分方程暑期班试题---NSE,非线性椭圆,平均曲率流,非线性守恒律,拟微分算子
  Navier-Stokes equations   1 Let $\omega$ be a domain in $\bbR^3$, complement of a compact set $\mathcal{B}$.
1009 0
[物理学与PDEs]第2章习题11 Lagrange 形式的一维理想流体力学方程组在强间断线上的间断连接条件
对由第 10 题给出的 Lagrange 形式的一维理想流体力学方程组, 给出解在强间断线上应满足的间断连接条件 (假设体积力 $F\equiv 0$).   解答: $$\beex \bea \sez{\tau}\cfrac{\rd x}{\rd t}&=-[u],\\ [u]\cfrac{\...
624 0
[物理学与PDEs]第5章习题6 各向同性材料时强椭圆性条件的等价条件
在线性弹性时, 证明各向同性材料, 强椭圆性条件 (5. 6) 等价于 Lam\'e 常数满足 $$\bex \mu>0,\quad \lm+2\mu>0.  \eex$$   证明:   (1)  对各向同性材料, $$\beex \bea a_{ijkl}&=\lm\delta_{ij}...
683 0
|
资源调度 BI 算法框架/工具
[物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系   5.4.1. 本构关系的一般形式   1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\bf T}({\bf x},{\bf F}({\bf x})), \eex$$ 则称材料是 (Cauchy) 弹性的; 这里 $\hat {\bf T}$ 称为响应函数.
839 0
[物理学与PDEs]第5章习题7 各向同性材料时稳定性条件的等价条件
在线性弹性时, 证明各向同性材料, 稳定性条件 (5. 27) 等价于 Lam\'e 常数满足 $$\bex \mu>0,\quad \lm+\cfrac{2}{3}\mu>0.  \eex$$   证明:   (1)  写出 $$\beex \bea \sum_{i,j,k,l} a_{i...
657 0
[物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿流线的一个守恒量
设定常 (即 $\cfrac{\p {\bf u}}{\p t}={\bf 0}$)、不可压缩 (设 $\rho=1$) 的理想流体所受的体积力仅为重力. 又设磁场满足条件: $({\bf H}\cdot\n){\bf H}={\bf 0}$.
788 0
|
算法框架/工具
[物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件
写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 (见第二章 $\S 4$), 并证明越过强间断线, 函数 $Z$ 保持连续.
853 0
|
资源调度
[物理学与PDEs]第3章第3节 电导率 $\sigma$ 为无穷时的磁流体力学方程组 3.3 磁场线``冻结&#39;&#39;原理
磁场线``冻结''原理: 在 $\sigma=\infty$ 时, 初始时刻分布在同一磁场线上的质点, 在运动过程中会一直保持在同一磁场线上, 即磁场线好像``冻结''在物质上. 事实上, $\cfrac{{\bf H}}{\rho}$, $\rd {\bf r}$ 满足同一线性齐次 ODE 组:...
759 0
|
Perl
[物理学与PDEs]第2章第4节 激波 4.2 熵条件
1.  R.H. 条件仅仅给出了越过激波时的能量守恒定律, 即热力学第一定律; 但客观的流体运动过程还需满足热力学第二定律, 即越过激波是个熵增过程: $$\bex S_1>S_0\quad(0,1\mbox{ 分别表示越过激波前、后状态}), \eex$$ 其等价于   (1)  $u_->u...
1012 0