实时计算 Flink版

首页 标签 实时计算 Flink版
Flink入坑指南 第四章:SQL中的经典操作Group By+Agg
Flink入坑指南系列文章,从实际例子入手,一步步引导用户零基础入门实时计算/Flink,并成长为使用Flink的高阶用户。 简介 Group By + Agg这个最经典的SQL使用方式。Group By是SQL中最基础的分组操作,agg的全称是aggregation(聚合操作),是一类SQL算子的统称,Flink中最常用的Agg操作有COUNT/SUM/AVG等,详情参见Flink支持的聚合操作列表。
探秘Hadoop生态10:Spark架构解析以及流式计算原理
导语 spark 已经成为广告、报表以及推荐系统等大数据计算场景中首选系统,因效率高,易用以及通用性越来越得到大家的青睐,我自己最近半年在接触spark以及spark streaming之后,对spark技术的使用有一些自己的经验积累以及心得体会,在此分享给大家。
日处理数据量超10亿:友信金服基于Flink构建实时用户画像系统的实践
在此背景下,友信金服公司推行全域的数据体系战略,通过打通和整合集团各个业务线数据,利用大数据、人工智能等技术构建统一的数据资产,如 ID-Mapping、用户标签等。友信金服用户画像项目正是以此为背景成立,旨在实现“数据驱动业务与运营”的集团战略。
Apache Flink 零基础入门(一):基础概念解析
本文是根据 Apache Flink 基础篇系列直播整理而成,由 Apache Flink PMC 戴资力与阿里巴巴高级产品专家陈守元共同分享。Apache Flink 系列入门教程每周更新一期,持续推送。
实时计算在「阿里影业实时报表业务」技术解读
阿里影业实时报表开始做法也是按照传统型报表做法一样,直接从阿里云rds写sql查询,随着数据量越来越大,这种做法已经没有办法满足业务扩张,带来的问题响应时间变慢,吞吐量低,我们急需要一种技术方案能满足未来2-3年随着影院增加,数据增长,而报表功能还能很好的满足客户需求技术方案。
菜鸟双11在「仓储配送数据实时化」的台前幕后
2017年双11,虽然仓配系统做了非常多业务端的优化,使得峰值不会达到如交易系统那般恐怖的程度,但仓配业务链路长、节点多、分析维度复杂的业务特点,也使我们在开发仓配实时数据的过程中,面临了不少挑战。而正好基于双11的业务背景,我们也开始着手建立起带有"仓配特色"的实时数据版图。
5分钟从零构建第一个 Apache Flink 应用
作者:伍翀 在本文中,我们将从零开始,教您如何构建第一个Apache Flink (以下简称Flink)应用程序。 开发环境准备 Flink 可以运行在 Linux, Max OS X, 或者是 Windows 上。
袋鼠云研发手记 | 数栈·开源:Github上400+Star的硬核分布式同步工具FlinkX
作为一家创新驱动的科技公司,袋鼠云每年研发投入达数千万,公司80%员工都是技术人员,袋鼠云产品家族包括企业级一站式数据中台PaaS数栈、交互式数据可视化大屏开发平台Easy[V]等产品也在迅速迭代。
StreamingPro 再次支持 Structured Streaming
之前已经写过一篇文章,StreamingPro 支持Spark Structured Streaming,不过当时只是玩票性质的,因为对Spark 2.0+ 版本其实也只是尝试性质的,重点还是放在了spark 1.6 系列的。
免费试用