实时计算 Flink版

首页 标签 实时计算 Flink版
年度回顾 | 2019 年的 Apache Flink(文末有福利)
2019 年即将落下帷幕,这一年对于 Apache Flink 来说是非常精彩的一年,里程碑式的一年。随着这一年在邮件列表发送了超过 1 万封邮件,JIRA 中超过 4 千个 tickets,以及 GitHub 上超过 3 千个 PR,Apache Flink 迎来了快速的发展。
如何分析及处理 Flink 反压?
反压(backpressure)是实时计算应用开发中,特别是流式计算中,十分常见的问题。反压意味着数据管道中某个节点成为瓶颈,处理速率跟不上上游发送数据的速率,而需要对上游进行限速。
实时计算Flink——基本概念
产品模型 项目空间(Project) 项目空间是实时计算 Flink最基本的业务组织单元,是您管理集群、作业、资源、人员的基本单元。您可以选择创建项目,也可以用子账号身份加入其它Project中。实时计算的项目空间,通过阿里云RAM主子账号支持多人协作。
Flink Window 排序
## 概述 - 对增量Window进行输出排序 - WordCount增量(按单词名称排序) - WordCount增量(按单词个数,再单词名称排序)
计算广告与流处理技术综述
案例与解决方案汇总页:阿里云实时计算产品案例&解决方案汇总 1.计算广告背景 广告仍然是互联网公司的主要变现手段,其市场规模2017年已达3000亿元,据统计全球互联网市值前十的公司广告收入占比高达40%,可见其重要性。
Apache Flink 进阶(八):详解 Metrics 原理与实战
Flink 提供的 Metrics 可以在 Flink 内部收集一些指标,通过这些指标让开发人员更好地理解作业或集群的状态。由于集群运行后很难发现内部的实际状况,跑得慢或快,是否异常等,开发人员无法实时查看所有的 Task 日志,比如作业很大或者有很多作业的情况下,该如何处理?此时 Metrics 可以很好的帮助开发人员了解作业的当前状况。
大数据分析的下一代架构--IOTA
IOTA是什么?你是否为下一代大数据架构做好准备? 经过这么多年的发展,已经从大数据1.0的BI/Datawarehouse时代,经过大数据2.0的Web/APP过渡,进入到了IOT的大数据3.0时代,而随之而来的是数据架构的变化。
Flink SQL 核心解密 —— 提升吞吐的利器 MicroBatch
之前我们在 Flink SQL 中支持了 MiniBatch, 在支持高吞吐场景发挥了重要作用。今年我们在 Flink SQL 性能优化中一项重要的改进就是升级了微批模型,我们称之为 MicroBatch,也叫 MiniBatch2.0。
免费试用