万字解析从根本解决大模型幻觉问题,附企业级实践解决方案
本文深入探讨大语言模型中的幻觉(Hallucination)问题,分析其成因、分类及企业级解决方案。内容涵盖幻觉的定义、典型表现与业务风险,解析其在预训练、微调、对齐与推理阶段的成因,并介绍RAG、幻觉检测技术及多模态验证工具。最后分享在客服、广告等场景的落地实践与效果,助力构建更可靠的大模型应用。
基于YOLOv8的PCB缺陷检测识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
本项目基于YOLOv8实现PCB缺陷检测,提供一站式解决方案。包含完整训练代码、标注数据集、预训练权重及PyQt5图形界面,支持图片、文件夹、视频和摄像头四种检测模式。项目开箱即用,适合科研、工业与毕业设计。核心功能涵盖模型训练、推理部署、结果保存等,检测类型包括缺孔、鼠咬缺口、开路、短路、飞线和杂铜。项目具备高性能检测、友好界面、灵活扩展及多输入源支持等优势,未来可优化模型轻量化、多尺度检测及报告生成等功能。
通义千问Qwen2.5-Coder 全系列来咯!强大、多样、实用
千问团队开源了强大的 Qwen2.5-Coder 系列模型,涵盖 0.5B 到 32B 六种尺寸,旨在推动开放代码模型的发展。该系列模型在代码生成、修复和推理等方面表现出色,支持多种编程语言,并在多个基准测试中达到 SOTA 水平。此外,Qwen2.5-Coder 还提供了丰富的应用场景,如代码助手、Artifacts 和 Interpreter,满足不同开发者的需求。
2万字揭秘阿里巴巴数据治理平台DataWorks建设实践
阿里巴巴一直将数据作为自己的核心资产与能力之一,从最早的淘宝、天猫等电商业务,到后续的优酷、高德、菜鸟等板块,DataWorks、MaxCompute、Hologres等产品用一套技术体系来支持不同业务的发展与创新,为企业带来整体的“数据繁荣”。
数据繁荣为我们带来了红利,同时也带动了各类数据治理需求的井喷,特别是降本等需求的不断出现,阿里云DataWorks团队将13年的产品建设经验整理成最佳实践,从数据生产规范性治理、数据生产稳定性治理、数据生产质量治理、数据应用提效治理、数据安全管控治理、数据成本治理、数据治理组织架构及文化建设等7个方面为大家揭秘数据治理平台建设实践
基于数据全生命周期的数据资产价值评估方法及应用
数据资产价值评估是现代数据资产管理和运营以及数据流通的基础。基于数据全生命周期理论,从第一性原则出发,通过评估单张数据资产表的成本、数据管理以及数据应用价值,实现对单张数据资产表的系统性评估。利用数据仓库和图算法等技术,以层为单位,每层分摊,血缘路径继承,精确计算得到单张数据资产表的成本价值;然后利用层次分析法得到数据资产非经济因素权重,进而得到数据资产阶梯价值;最后通过实例分析验证了新方法的合理性和可行性。
数据清洗6大核心方法,一文讲透!
数据清洗是数据分析的基石,能确保结果准确、提升效率、统一口径。面对缺失值、异常值、格式不一等痛点,需结合业务理解,通过系统化步骤与工具(如FineDataLink)高效处理,避免“垃圾进垃圾出”。