知识图谱

首页 标签 知识图谱
# 知识图谱 #
关注
3233内容
深度 | 两个案例,掌握AI在大数据领域的前沿应用
近日,全球技术学习技术大会首次在京举行,阿里巴巴数据技术及产品部资深算法专家杨红霞(鸿侠)作为特邀嘉宾出席并发表主题演讲。鸿侠从什么是数据新能源说起,接着介绍了阿里目前比较成功的两款数据产品,一个是是自动化标签生产,另外一个是大规模分布式知识图谱,以及在此之上的一些重要应用。
知识图谱简介
知识图谱简介 作者:Walker         信息技术的发展不断推动着互联网技术的变革,Web技术作为互联网时的标志性技术,正处于这场技术变的核心。
云原生时代|分布式系统设计知识图谱(内含22个知识点)
我们身处于一个充斥着分布式系统解决方案的计算机时代,无论是支付宝、微信这样顶级流量产品、还是区块链、IOT等热门概念、抑或如火如荼的容器生态技术如Kubernetes,其背后的技术架构核心都离不开分布式系统。
一文揭秘!自底向上构建知识图谱全过程
知识图谱的构建技术主要有自顶向下和自底向上两种。其中自顶向下构建是指借助百科类网站等结构化数据源,从高质量数据中提取本体和模式信息,加入到知识库里。而自底向上构建,则是借助一定的技术手段,从公开采集的数据中提取出资源模式,选择其中置信度较高的信息,加入到知识库中。
云栖硬核回顾|企查查搜索引擎演进之路
企查查作为企业征信行业的搜索引擎,一直以来都与阿里云开放搜索团队有深度合作。本次朱总独家揭秘,开放搜索陪伴企查查从创业初期到成为企业征信行业的独角兽的过程中,是如何满足企查查产品海量数据的精准搜索需求的。
使用Pandas: str.replace() 进行文本清洗
前段时间参加了Kaggle上的Mercari Price Suggestion Challenge比赛,收获良多,过些时候准备进行一些全面的总结,本篇文章先谈一个比赛中用到的小技巧。 这个比赛数据中有一个特征叫做 "item_description",大致是一些商品描述,比如什么时候买的、新旧程度如何、什么牌子的等等。
知识图谱的独特之处——深度学习无法解决的人工智能
2018云栖大会上海峰会,阿里云高级算法专家林奈对特定领域知识图谱的构建及应用案例进行讲述,最近几年知识图谱有一些过气,但是由于一些知识性问题深度学习解决不了,所以知识图谱又开始慢慢的发展起来。本文主要介绍知识图谱和深度学习的不同,以及知识图谱的架构构建和知识引擎的应用。
知识图谱调研-Freebase
介绍 Freebase 是一个由元数据组成的大型合作知识库,内容主要来自其社区成员的贡献。它整合了许多网上的资源,包括部分私人wiki站点中的内容。Freebase 致力于打造一个允许全球所有人(和机器)快捷访问的资源库,由美国软件公司Metaweb开发并于2007年3月公开运营。2010年7月16日被Google收购, 2014年12月16日,Google宣布将在六个月后关闭 Freebase
工业的最强大脑—ET工业大脑,打通数据,升维“供、研、产、销”
阿里云工业大数据总监杨斌在2018云栖大会·深圳峰会中介绍了他们团队的ET工业大脑,通过大数据以及人工智能,创建一个工业的最强大脑,协助制造业实现关键工序智能化、生产过程智能优化控制等方面的转型升级。
免费试用