流计算

首页 标签 流计算
# 流计算 #
关注
31170内容
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
|
18天前
|
云端问道5期方案教学-基于 Hologres 轻量实时的高性能OLAP分析
本文介绍了基于Hologres的轻量实时高性能OLAP分析方案,涵盖OLAP典型应用场景及Hologres的核心能力。Hologres是阿里云的一站式实时数仓,支持多种数据源同步、多场景查询和丰富的生态工具。它解决了复杂OLAP场景中的技术栈复杂、需求响应慢、开发运维成本高、时效性差、生态兼容弱、业务间相互影响等难题。通过与ClickHouse对比,Hologres在性能、写入更新、主键支持等方面表现更优。文中还展示了小红书、乐元素等客户案例,验证了Hologres在实际应用中的优势,如免运维、查询快、成本节约等。
深入理解 Flink 中的 State
Flink 的 State(状态)是其四大核心之一,为流处理和批处理任务提供强大支持。本文深入探讨 Flink 中的状态管理,涵盖 State 在 HDFS 中的存储格式、存在形式(如 ValueState、ListState 等)、使用方法、过期时间 TTL 和清除策略,并介绍 Table API 和 SQL 模块中的状态管理。通过实际案例,帮助读者理解如何在电商订单处理、实时日志统计等场景中有效利用状态管理功能。
Fluss: First Impression
本文由Flink PMC Member徐榜江翻译自Yaroslav Tkachenko的文章《Fluss: First Impression》,介绍了阿里巴巴开源的新一代流存储系统Fluss。文章分为七个部分,涵盖Fluss简介、Table作为核心概念、PrimaryKey Table、一体化集成、Flink SQL的Delta Join、Fluss实现细节及总结。Fluss通过表结构组织数据流,支持主键表和高效的点查,深度集成LakeHouse,并计划与Flink深度集成,提供实时数据分析能力。
使用PAI-FeatureStore管理风控应用中的特征
PAI-FeatureStore 是阿里云提供的特征管理平台,适用于风控应用中的离线和实时特征管理。通过MaxCompute定义和设计特征表,利用PAI-FeatureStore SDK进行数据摄取与预处理,并通过定时任务批量计算离线特征,同步至在线存储系统如FeatureDB或Hologres。对于实时特征,借助Flink等流处理引擎即时分析并写入在线存储,确保特征时效性。模型推理方面,支持EasyRec Processor和PAI-EAS推理服务,实现高效且灵活的风险控制特征管理,促进系统迭代优化。
流计算需要框架吗?SPL 可能是更好的选择
流数据源的动态无界特性使得传统数据库技术难以直接处理,而Heron、Samza、Storm、Spark、Flink等计算框架在流计算领域取得了先发优势。然而,这些框架往往侧重于访问能力,计算能力不足,尤其在高级计算如流批混算、复杂计算和高性能计算方面表现欠佳。esProc SPL作为基于JVM的轻量级开源计算类库,专注于提升流计算的计算能力,支持丰富的流数据访问、灵活的集成接口和高效的内外存存储格式,具备强大的高级计算功能,能够简化业务逻辑开发并适应多样的应用场景。SPL通过专业的计算语言和结构化数据处理能力,为流计算提供了更优的解决方案。
基于 Flink 进行增量批计算的探索与实践
本文整理自阿里云高级技术专家、Apache Flink PMC朱翥老师在Flink Forward Asia 2024的分享,内容分为三部分:背景介绍、工作介绍和总结展望。首先介绍了增量计算的定义及其与批计算、流计算的区别,阐述了增量计算的优势及典型需求场景,并解释了为何选择Flink进行增量计算。其次,详细描述了当前的工作进展,包括增量计算流程、执行计划生成、控制消费数据量级及执行进度记录恢复等关键技术点。最后,展示了增量计算的简单示例、性能测评结果,并对未来工作进行了规划。
免费试用