并行计算

首页 标签 并行计算
# 并行计算 #
关注
5056内容
|
19小时前
| |
SPAR3D:一张图片就能生成3D模型,每个物体的重建时间仅需0.7秒!
SPAR3D 是由 Stability AI 和伊利诺伊大学香槟分校推出的先进单图生成3D模型方法,支持快速推理与用户交互式编辑,适用于多种3D建模场景。
VideoRefer:阿里达摩院开源视频对象感知与推理框架,可集成 VLLM 提升其空间和时间理解能力
VideoRefer 是浙江大学与阿里达摩学院联合推出的视频对象感知与推理技术,支持细粒度视频对象理解、复杂关系分析及多模态交互,适用于视频剪辑、教育、安防等多个领域。
SPRIGHT:提升文本到图像模型空间一致性的数据集
SPRIGHT 是一个专注于空间关系的大型视觉-语言数据集,通过重新描述600万张图像,显著提升文本到图像模型的空间一致性。
VITRON:开源像素级视觉大模型,同时满足图像与视频理解、生成、分割和编辑等视觉任务
VITRON 是由 Skywork AI、新加坡国立大学和南洋理工大学联合推出的像素级视觉大模型,支持图像与视频的理解、生成、分割和编辑,适用于多种视觉任务。
|
6天前
|
《量子比特:解锁人工智能并行计算加速的密钥》
量子计算与人工智能的融合正带来变革性突破。量子比特通过叠加特性可同时处于多种状态,极大提高计算效率;纠缠特性使量子比特间信息共享,实现并行计算。二者结合为AI算法提供前所未有的加速,推动神经网络训练和复杂问题处理的高效性。尽管面临环境干扰等挑战,量子比特仍为未来AI发展带来巨大潜力和创新机遇。
|
8天前
|
《构建高效K近邻算法:降低计算复杂度的策略与实践》
K近邻(KNN)算法在机器学习中广泛应用,但面临计算复杂度高的问题。为提高效率,可通过以下方法优化: 1. **数据预处理**:降维(如PCA、LDA)和标准化,减少维度和尺度差异。 2. **优化距离度量**:选择合适的距离函数或自适应调整,提升相似性判断。 3. **加速搜索**:使用KD树、球树、LSH等数据结构,减少搜索范围。 4. **近似最近邻**:随机投影、基于聚类的近似算法,降低计算成本。 5. **并行与分布式处理**:利用多核、GPU或分布式框架加速计算。 6. **融合其他算法**:结合神经网络或聚类算法,先提取特征或聚类再应用KNN。
社区供稿 | Para-Former:DUAT理论指导下的CV神经网络并行化,提速多层模型推理
神经网络正越来越多地朝着使用大数据训练大型模型的方向发展,这种解决方案在许多任务中展现出了卓越的性能。然而,这种方法也引入了一个迫切需要解决的问题:当前的深度学习模型基于串行计算,这意味着随着网络层数的增加,训练和推理时间也会随之增长。
行业实践 | 基于Qwen2-VL实现医疗表单结构化输出
本项目针对不同医院检查报告单样式差异大、手机拍摄质量差等问题,传统OCR识别效果不佳的情况,探索并选定了Qwen2-vl系列视觉语言模型。通过微调和优化,模型在识别准确率上显著提升,能够精准识别并结构化输出报告单信息,支持整张报告单及特定项目的识别。系统采用FastAPI封装接口,Gradio构建展示界面,具备高效、灵活的应用特性。未来该方案可扩展至多种文本识别场景,助力行业数字化转型。
免费试用