网络可视化

首页 标签 网络可视化
# 网络可视化 #
关注
91内容
揭秘云网络大会“网红”:阿里云自研高性能网关XGW
XGW是洛神云网络平台的硬件转发层核心,提供了高性能的网络转发能力,负责公网,专线和跨Region流量的汇聚和分发,满足用户大带宽、大单流、稳定性、低延时/低抖动等需求。
CBAM:Convolutional Block Attention Module--通道+空间混合注意力
提出了**卷积块注意模块(CBAM)**,这是一种用于前馈卷积神经网络的简单而有效的注意模块。==给定一个中间特征图,我们的模块沿两个单独的维度(通道和空间)顺序推断注意力图,然后将注意力图乘以输入特征图以进行自适应特征细化。==因为 CBAM 是一个轻量级的通用模块,它可以无缝集成到任何 CNN 架构中,开销可以忽略不计,并且可以与基础 CNN 一起进行端到端训练。
|
11天前
| |
来自: 云原生
企业网络复杂度上升后,运维团队为什么应该选择OpManager?
企业网络日益复杂,设备繁杂、云网混合导致管理难度陡增。OpManager以自动发现、智能告警、路径感知和基础自动化,实现网络可视化与集中管控,降低运维负担,让故障定位更高效,管理更从容。
深度学习论文阅读图像分类篇(一):AlexNet《ImageNet Classification with Deep Convolutional Neural Networks》
 我们训练了一个大型深度卷积神经网络来将 ImageNet LSVRC2010 竞赛的 120 万高分辨率的图像分到 1000 不同的类别中。在测试数据上,我们得到了 top-1 37.5%和 top-5 17.0%的错误率,这个结果比目前的最好结果好很多。
属性二部图的表示学习模型 | sigir 论文解读
SIGIR 论文:BiANE: Bipartite Attributed Network Embedding (SIGIR-2020)解读。
免费试用