PAI实现的深度学习网络可视化编辑功能-FastNeuralNetwork

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 在深度学习领域流传着这样一句话,“一张好的表示图,胜过一千个公式” 本文会介绍如何通过PAI-DSW中的FastNerualNetwork功能实现深度学习网络的可视化编辑。 神经网络最早诞生于生物领域,用来模仿生物大脑复杂的神经元构成,后来人类为了探索大脑是如何思考,通过一层一层的数学公式来模拟大脑分析事物的过程。
在深度学习领域流传着这样一句话,“一张好的表示图,胜过一千个公式”
本文会介绍如何通过PAI-DSW中的FastNeuralNetwork功能实现深度学习网络的可视化编辑。

PAI产品入口:https://data.aliyun.com/product/learn
神经网络最早诞生于生物领域,用来模仿生物大脑复杂的神经元构成,后来人类为了探索大脑是如何思考,通过一层一层的数学公式来模拟大脑分析事物的过程。再后来就有了深度学习框架,人们可以通过代码去构建深度学习网络,复杂的深度学习网络通常由几十行甚至几百行代码构成,每一层网络又由许多参数组成,如下图:

当层数增多,通过代码去构建深度学习网络变的困难,并且难以维护和调整。FastNeuralNetwork功能可以将深度学习构图代码一键式转化成网络架构图,并且可以实现可视化编辑,大大增强了模型解读性和可维护性,如下图:

下面就介绍下如何使用FastNeuralNetwork功能。

功能介绍

1.创建

进入DSW,目前只有KerasCode和KerasGraph两个Kernel实现了FastNeuralNetwork功能。

  • KerasCode:先写深度学习网络代码,然后将代码转成图
  • KerasGraph:直接通过画布构建深度学习网络,并且将图转成代码

也可以通过左侧Demo列表提供的官方代码FNNDemo直接使用。

2.Magic Command介绍

打开Keras Code功能进入交互式开发页面,先通过代码构建深度学习网络。如以下示例代码:

import keras
from keras.models import Model
from keras.models import Sequential
from keras.layers import Conv2D, Dense, MaxPooling2D, Flatten, Dropout
from keras.initializers import VarianceScaling, Zeros

model = Sequential()
model.add(MaxPooling2D(padding='valid', data_format='channels_last', pool_size=(2, 2), strides=(2, 2), trainable=True))
model.add(Conv2D(dilation_rate=(1, 1), padding='valid', data_format='channels_last', bias_initializer=Zeros(), use_bias=True, filters=64, strides=(1, 1), trainable=True, kernel_initializer=VarianceScaling(mode='fan_avg', seed=None, scale=1.0, distribution='uniform'), activation='relu', kernel_size=(3, 3)))
model.add(MaxPooling2D(padding='valid', data_format='channels_last', pool_size=(2, 2), strides=(2, 2), trainable=True))
model.add(Dropout(rate=0.25, trainable=True))
model.add(Flatten(data_format='channels_last', trainable=True))
model.add(Dense(bias_initializer=Zeros(), use_bias=True, units=128, trainable=True, kernel_initializer=VarianceScaling(mode='fan_avg', seed=None, scale=1.0, distribution='uniform'), activation='relu'))
model.add(Dropout(rate=0.4, trainable=True))
model.add(Dropout(rate=0.2))

代码中构建了一个Sequential模型,模型对象是model,可以通过输入Magic Command 将代码转化成图

%show_model model

点击图片进入画图编辑界面:

3.编辑网络

FNN功能实现了Keras的原生Cell向画布拖拽并且编辑的功能,画布分为Cell列表区,画布编辑区和参数配置区。

相同作用的Cell会自动编排成组:

画布中的组件会跟代码做自动映射:

4.代码保存

点击To Code按钮弹窗,提示通过画布的修改会导致代码有哪些变化:

点击ok,即可在原有代码文件中生成新的模型构建代码。

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
3天前
|
机器学习/深度学习 数据采集 运维
机器学习在网络流量预测中的应用:运维人员的智慧水晶球?
机器学习在网络流量预测中的应用:运维人员的智慧水晶球?
35 18
|
7天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
51 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
15天前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
162 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
1月前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
54 18
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
135 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
1月前
|
机器学习/深度学习 边缘计算 运维
机器学习在网络安全中的防护:智能化的安全屏障
机器学习在网络安全中的防护:智能化的安全屏障
150 15
|
2月前
|
人工智能 搜索推荐 决策智能
不靠更复杂的策略,仅凭和大模型训练对齐,零样本零经验单LLM调用,成为网络任务智能体新SOTA
近期研究通过调整网络智能体的观察和动作空间,使其与大型语言模型(LLM)的能力对齐,显著提升了基于LLM的网络智能体性能。AgentOccam智能体在WebArena基准上超越了先前方法,成功率提升26.6个点(+161%)。该研究强调了与LLM训练目标一致的重要性,为网络任务自动化提供了新思路,但也指出其性能受限于LLM能力及任务复杂度。论文链接:https://arxiv.org/abs/2410.13825。
70 12
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
88 31
|
2月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
356 55
|
2月前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。

热门文章

最新文章

相关产品

  • 人工智能平台 PAI