博弈论Nim取子问题,困扰千年的问题一行代码解决
云栖号资讯:【点击查看更多行业资讯】在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!
这个博弈问题非常古老,延续长度千年之久,一直到20世纪初才被哈佛大学的一个数学家找到解法,可见其思维的难度。
数字化与数智化的区别
数字化是将信息转化为数字格式的过程,侧重于数据的转换和流程优化,而数智化是在此基础上结合智能技术进行深入分析和决策,强调智能应用。两者都是数据驱动的,但数智化更注重智能决策和业务创新。从数字化到数智化,企业需克服战略、组织和技术的挑战,实现体制、资源、机制和能力的全面转型。低代码平台等工具可助力企业加速数字化进程。
底层技术大揭秘!AI智能导购如何重塑购物体验
双十一期间,淘宝内测AI助手“淘宝问问”,基于阿里通义大模型,旨在提升用户在淘宝上的商品搜索和推荐效率。该助手通过品牌推荐、兴趣商品推荐和关联问题三大板块,提供个性化购物体验。其背后采用多智能体架构,包括规划助理和商品导购助理,通过对话历史和用户输入,实现精准商品推荐。此外,文章还介绍了如何快速部署此解决方案,并探讨了其对现代购物体验的影响。
解决推理能力瓶颈,用因果推理提升LLM智能决策
从ChatGPT到AI智能体,标志着AI从对话走向自主执行复杂任务的能力跃迁。AI智能体可完成销售、旅行规划、外卖点餐等多场景任务,但其发展受限于大语言模型(LLM)的推理能力。LLM依赖统计相关性,缺乏对因果关系的理解,导致在非确定性任务中表现不佳。结合因果推理与内省机制,有望突破当前AI智能体的推理瓶颈,提升其决策准确性与自主性。
Multi-Agent 的灵活编排之路
本文探讨了Copilot 3.0架构中规划模块结合DeepSeek R1强化学习(GRPO)的实践,重点分析多智能体架构下大模型如何灵活调度多个智能体解决实际问题。文章从背景、问题分析、Planning角色、难点、效果对比到解决方案进行了深入讲解,并通过实验现象展示了有无思考过程对模型性能的影响。结果显示,GRPO训练后推理长度显著降低,准确率提升7.4个百分点,同时解决了复杂问题与简单问题处理间的平衡问题。