自然语言处理

首页 标签 自然语言处理
# 自然语言处理 #
关注
25758内容
|
13天前
|
Python中的文字识别利器:pytesseract库
`pytesseract` 是一个基于 Google Tesseract-OCR 引擎的 Python 库,能够从图像中提取文字,支持多种语言,易于使用且兼容性强。本文介绍了 `pytesseract` 的安装、基本功能、高级特性和实际应用场景,帮助读者快速掌握 OCR 技术。
AI技术在智能客服系统中的应用与挑战
【10月更文挑战第28天】本文将深入探讨人工智能(AI)技术在智能客服系统中的应用及其面临的挑战。我们将通过实例分析,了解AI如何改善客户服务体验,提高效率和降低成本。同时,我们也将关注AI在实际应用中可能遇到的问题,如语义理解、情感识别和数据安全等,并提出相应的解决方案。
【YOLOv11改进 - 注意力机制】 MHSA:多头自注意力(Multi-Head Self-Attention)
【YOLOv11改进 - 注意力机制】 MHSA:多头自注意力(Multi-Head Self-Attention)BoTNet是一种将自注意力机制引入ResNet的创新架构,通过在最后三个瓶颈块中用全局自注意力替换空间卷积,显著提升了图像分类、物体检测和实例分割的性能,同时减少了参数量和计算开销。在COCO实例分割和ImageNet分类任务中,BoTNet分别达到了44.4%的Mask AP和84.7%的Top-1准确率,超越了现有模型。
【YOLOv11改进 - 注意力机制】CoTAttention:上下文转换器注意力
【YOLOv11改进 - 注意力机制】CoTAttention:上下文转换器注意力Contextual Transformer (CoT) 是一种新型的Transformer风格模块,通过3×3卷积对输入键进行上下文编码,生成静态上下文表示,并通过两个1×1卷积学习动态多头注意力矩阵,增强视觉表示能力。CoTNet将CoT块应用于ResNet架构中,替代3×3卷积,提升图像识别、目标检测和实例分割等任务的性能。源码可在GitHub获取。
|
13天前
| |
来自: 物联网
「Mac畅玩鸿蒙与硬件11」鸿蒙 UI 组件篇1 - Text 和 Button 组件详解
本篇将详细介绍鸿蒙应用开发中的 Text 和 Button 组件。通过本篇内容,你将学习如何使用 Text 组件显示文本、格式化文本样式,以及如何使用 Button 组件处理点击事件并自定义样式。掌握这些基本组件的用法将为后续的 UI 开发奠定基础。
深入理解ChatGPT:下一代人工智能助手的开发与应用
【10月更文挑战第27天】本文深入探讨了ChatGPT的技术原理、开发技巧和应用场景,展示了其在语言理解和生成方面的强大能力。文章介绍了基于Transformer的架构、预训练与微调技术,以及如何定制化开发、确保安全性和支持多语言。通过实用工具如GPT-3 API和Fine-tuning as a Service,开发者可以轻松集成ChatGPT。未来,ChatGPT有望在智能家居、自动驾驶等领域发挥更大作用,推动人工智能技术的发展。
|
13天前
|
DeepSpeed分布式训练框架深度学习指南
【11月更文挑战第6天】随着深度学习模型规模的日益增大,训练这些模型所需的计算资源和时间成本也随之增加。传统的单机训练方式已难以应对大规模模型的训练需求。
文生图大模型
DALL·E 是由 OpenAI 开发的基于深度学习的图像生成模型,能够根据文本描述生成原创图像。从 2021 年初的 DALL·E 到 2022 年的 DALL·E 2,再到最新的 DALL·E 3,其功能不断升级,包括生成、扩展、修改图像及生成变体图像。DALL·E 3 在提示优化、清晰度和多风格支持方面进行了增强,广泛应用于定制图像生成、虚拟设定、产品设计和广告营销等领域。
【EMNLP2024】面向长文本的文视频表征学习与检索模型 VideoCLIP-XL
阿里云人工智能平台 PAI 与华南理工大学金连文教授团队合作,在自然语言处理顶会 EMNLP 2024 上发表论文《VideoCLIP-XL: Advancing Long Description Understanding for Video CLIP Models》。VideoCLIP-XL 模型,有效地提升了对视频的长文本描述的理解能力。
免费试用