PyTorch

首页 标签 PyTorch
# PyTorch #
关注
4924内容
125_训练加速:FlashAttention集成 - 推导注意力优化的独特内存节省
2025年,大型语言模型的训练面临着前所未有的挑战。随着模型参数量和序列长度的不断增加,传统注意力机制的内存瓶颈问题日益突出。FlashAttention作为一种突破性的注意力算法,通过创新的内存访问模式和计算优化,显著提升了训练效率和内存利用。
126_自定义损失:多目标训练 - 设计加权损失的独特平衡策略
在2025年的大型语言模型(LLM)训练领域,多目标学习已成为提升模型综合性能的关键技术之一。传统的单一损失函数训练方法逐渐显现出局限性,尤其在处理复杂的语言理解、生成和推理任务时。多目标训练通过同时优化多个互补的学习目标,能够显著提升模型的泛化能力、知识保留和任务适应性。
130_知识蒸馏技术:温度参数与损失函数设计 - 教师-学生模型的优化策略与PyTorch实现
随着大型语言模型(LLM)的规模不断增长,部署这些模型面临着巨大的计算和资源挑战。以DeepSeek-R1为例,其671B参数的规模即使经过INT4量化后,仍需要至少6张高端GPU才能运行,这对于大多数中小型企业和研究机构来说成本过高。知识蒸馏作为一种有效的模型压缩技术,通过将大型教师模型的知识迁移到小型学生模型中,在显著降低模型复杂度的同时保留核心性能,成为解决这一问题的关键技术之一。
129_量化技术:INT8与动态量化 - 推导压缩的精度损失公式
在2025年的大语言模型(LLM)时代,随着模型规模的指数级增长,部署这些庞然大物变得越来越具有挑战性。GPT-5和Claude 3等最新模型的参数量已经达到数千亿甚至上万亿,这给计算资源和内存带来了巨大压力。模型量化作为一种有效的压缩技术,正在成为解决这一挑战的关键方案。本文将深入探讨LLM量化技术,特别是INT8和动态量化方法,推导其精度损失公式,并提供2025年最新的优化策略和实现代码。
19_Word2Vec详解:训练你的词嵌入
在自然语言处理(NLP)领域,如何将词语转换为计算机可理解的数值表示一直是核心挑战之一。从早期的one-hot编码到如今的预训练语言模型嵌入,词表示技术经历了革命性的演变。其中,Word2Vec作为2013年由Google提出的开创性模型,为现代词嵌入技术奠定了基础。尽管在2025年,我们已经拥有了更多先进的词嵌入方法,但Word2Vec依然是理解词向量本质和深度学习文本表示的重要基石。
21_RNN与LSTM:序列建模的经典方法
在自然语言处理领域,处理序列数据是一个核心挑战。传统的机器学习方法难以捕捉序列中的时序依赖关系,而循环神经网络(Recurrent Neural Network,RNN)及其变种长短期记忆网络(Long Short-Term Memory,LSTM)通过其独特的循环结构,为序列建模提供了强大的解决方案。本教程将深入探讨RNN和LSTM的原理、实现方法和最新应用,帮助读者全面掌握这一NLP核心技术。
75_TPU集成:Google Cloud加速
在大型语言模型(LLM)训练和推理的竞赛中,计算硬件的选择直接决定了研发效率和成本。Google的Tensor Processing Unit(TPU)作为专为AI计算设计的专用芯片,正逐渐成为大规模LLM开发的首选平台之一。随着2025年第七代TPU架构Ironwood的发布,Google在AI计算领域再次确立了技术领先地位。
54_模型优化:大模型的压缩与量化
随着大型语言模型(LLM)的快速发展,模型规模呈指数级增长,从最初的数亿参数到如今的数千亿甚至万亿参数。这种规模扩张带来了惊人的能源消耗和训练成本,同时也给部署和推理带来了巨大挑战。2025年,大模型的"瘦身"已成为行业发展的必然趋势。本文将深入剖析大模型压缩与量化的核心技术、最新进展及工程实践,探讨如何通过创新技术让大模型在保持高性能的同时实现轻量化部署,为企业和开发者提供全面的技术指导。
23_Transformer架构详解:从原理到PyTorch实现
Transformer架构自2017年Google发表的论文《Attention Is All You Need》中提出以来,彻底改变了深度学习特别是自然语言处理领域的格局。在短短几年内,Transformer已成为几乎所有现代大型语言模型(LLM)的基础架构,包括BERT、GPT系列、T5等革命性模型。与传统的RNN和LSTM相比,Transformer通过自注意力机制实现了并行化训练,极大提高了模型的训练效率和性能。
74_调试技巧:OOM与性能瓶颈
在大型语言模型(LLM)的开发与部署过程中,内存溢出(Out of Memory,简称OOM)错误和性能瓶颈问题是开发者经常面临的两大挑战。随着模型规模的不断扩大(从最初的BERT、GPT-2到现在的GPT-4、Claude 3等千亿甚至万亿参数的模型),这些问题变得更加突出。据2025年最新的开发者调查报告显示,超过78%的LLM开发者在模型训练或推理过程中遇到过OOM错误,而性能瓶颈则影响了约65%的生产环境部署。
免费试用