PyTorch

首页 标签 PyTorch
# PyTorch #
关注
4845内容
|
2天前
| |
高效处理多维数组:einsum()函数从入门到精通
本文深入解析了NumPy中的`einsum()`函数,从基础语法到高级应用全面展开。文章首先介绍了爱因斯坦求和约定的数学基础,解释了`einsum()`如何通过简洁的索引符号实现复杂的多维数组运算。
|
5天前
| |
深入解析torch.compile:提升PyTorch模型性能、高效解决常见问题
PyTorch 2.0推出的`torch.compile`功能为深度学习模型带来了显著的性能优化能力。本文从实用角度出发,详细介绍了`torch.compile`的核心技巧与应用场景,涵盖模型复杂度评估、可编译组件分析、系统化调试策略及性能优化高级技巧等内容。通过解决图断裂、重编译频繁等问题,并结合分布式训练和NCCL通信优化,开发者可以有效提升日常开发效率与模型性能。文章为PyTorch用户提供了全面的指导,助力充分挖掘`torch.compile`的潜力。
犬鼻纹识别是如何做到的?附代码示例
犬鼻纹识别技术利用深度学习与图像处理,通过手机等设备采集犬鼻图像,定位鼻纹关键点并提取有效区域。经灰度化、降噪等预处理后,输入残差卷积神经网络提取深度特征,形成代表犬鼻独特性的数值向量。最终,将特征与数据库比对,计算相似度完成识别。示例代码基于 PyTorch,包含数据预处理、模型训练及预测流程,实现高效精准的犬只身份认证。
|
7天前
|
利用PyTorch处理个人数据集
如此看来,整个处理个人数据集的过程就像进行一场球赛。你设立球场,安排队员,由教练训练,最后你可以看到他们的表现。不断地学习,不断地调整,你的模型也会越来越厉害。 当然,这个过程看似简单,但在实际操作时可能会奇怪各种问题。需要你在实践中不断摸索,不断学习。可是不要怕,只要你热爱,不怕困难,你一定能驯服你的数据,让他们为你所用!
|
10天前
|
对chinese_llama_aplaca模型的训练过程和代码的详细解读
以上都是大体的训练过程和代码解读,具体的进阶内容,会涉及到模型的评估,超参数的选择,模型的调整等更复杂的主题,每个主题都能写一整篇文章去详细解释。
|
11天前
|
Transformer总结笔记
1、PyTorch中的基础运算 2、自注意力机制 3、多头注意力机制 4、带隐码的多头注意力机制 5、交叉注意力机制
|
12天前
| |
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
本文深入探讨神经网络模型量化技术,重点讲解训练后量化(PTQ)与量化感知训练(QAT)两种主流方法。PTQ通过校准数据集确定量化参数,快速实现模型压缩,但精度损失较大;QAT在训练中引入伪量化操作,使模型适应低精度环境,显著提升量化后性能。文章结合PyTorch实现细节,介绍Eager模式、FX图模式及PyTorch 2导出量化等工具,并分享大语言模型Int4/Int8混合精度实践。最后总结量化最佳策略,包括逐通道量化、混合精度设置及目标硬件适配,助力高效部署深度学习模型。
|
14天前
|
DeepSeek 部署方式与技术实践
DeepSeek的部署灵活性使其在多个领域大放异彩,但需根据场景权衡性能、成本与安全性。随着工具生态的完善与行业方案的沉淀,2025年将成为AI大模型落地关键年。开发者应持续关注MoE、COT等技术创新,结合自身需求选择最优部署策略。
|
14天前
| |
PyTorchVideo实战:从零开始构建高效视频分类模型
本文详细介绍了基于PyTorchVideo和PyTorch Lightning构建视频分类模型的全流程。通过Kinetics数据集,利用3D ResNet-50实现高效动作识别。教程涵盖数据加载与增强、模型构建及训练流程,结合两大框架优势,简化开发复杂度并提升性能,为视频理解任务提供完整解决方案。
免费试用