java 中的fork join框架
              Java中的Fork Join框架于Java 7引入,旨在提升并行计算能力。它通过“分而治之”的思想,将大任务拆分为多个小任务(fork),再将结果合并(join)。核心组件包括:ForkJoinPool(管理线程池和工作窃取机制)、ForkJoinWorkerThread(执行具体任务的工作线程)和ForkJoinTask(定义任务逻辑,常用子类为RecursiveAction和RecursiveTask)。框架支持通过invoke、fork/join等方式提交任务,广泛应用于高性能并发场景。
              
             
            
            
            
            
            
            
              
              弹性算力革命:企业级GPU云服务如何重构AI与图形处理的效能边界
              企业级GPU云服务基于云计算技术,为企业提供强大的GPU资源,无需自购硬件。它广泛应用于人工智能、大数据、3D建模、动画制作、GIS及医疗影像等领域,加速深度学习训练、图形处理和科学计算,提升效率并降低成本。企业可按需获取计算资源,灵活应对业务高峰,优化成本结构,推动业务发展。
              
             
            
              
              NPU上运行onnxruntime
              在Ascend环境下使用onnxruntime推理时,若安装了GPU版本的onnxruntime(`onnxruntime-gpu`),可能会因缺少CUDA组件报错。正确做法是卸载`onnxruntime-gpu`,并根据官方文档适配NPU,通过源码构建支持CANN的onnxruntime whl包。具体步骤为克隆onnxruntime源码,使用`--use_cann`参数构建,并安装生成的whl包。最后,配置CANNExecutionProvider进行推理。
              
             
            
              
              基于 Megatron 的多模态大模型训练加速技术解析
              Pai-Megatron-Patch 是一款由阿里云人工智能平台PAI 研发的围绕英伟达 Megatron 的大模型训练配套工具,旨在帮助开发者快速上手大模型,打通大模型相关的高效分布式训练、有监督指令微调、下游任务评估等大模型开发链路。本文以 Qwen2-VL 为例,从易用性和训练性能优化两个方面介绍基于 Megatron 构建的 Pai-Megatron-Patch 多模态大模型训练的关键技术