【机器学习】逻辑回归:原理、应用与实践
逻辑回归(Logistic Regression)是一种广泛应用于分类问题的统计学方法,尽管其名称中含有“回归”二字,但它实际上是一种用于解决二分类或多分类问题的线性模型。逻辑回归通过使用逻辑函数(通常为sigmoid函数)将线性模型的输出映射到概率空间,从而预测某个事件发生的概率。本文将深入探讨逻辑回归的理论基础、模型构建、损失函数、优化算法以及实际应用案例,并简要介绍其在机器学习领域的地位和局限性。
SLS机器学习介绍(03):时序异常检测建模
虽然计算机软硬件的快速发展已经极大提高了应用程序的可靠性,但是在大型集群中仍然存在大量的软件错误和硬件故障。系统要求7x24小时不间断运行,因此,对这些系统进行持续监控至关重要。这就要求我们就被从系统中持续采集系统运行日志,业务运行日志的能力,并能快速的分析和监控当前状态曲线的异常,一旦发现异常,能第一时间将信息送到相关人员手中。
进击的Kubernetes调度系统(三):支持批任务的Binpack Scheduling
阿里云容器服务团队结合多年Kubernetes产品与客户支持经验,对Kube-scheduler进行了大量优化和扩展,逐步使其在不同场景下依然能稳定、高效地调度各种类型的复杂工作负载。 《进击的Kubernetes调度系统》系列文章将把我们的经验、技术思考和实现细节全面地展现给Kubernetes用户和开发者,期望帮助大家更好地了解Kubernetes调度系统的强大能力和未来发展方向。