灵活定义神经网络结构

简介: 用numpy可以灵活定义神经网络结构,还可以应用numpy强大的矩阵运算功能!   一、用法 1). 定义一个三层神经网络: '''示例一''' nn = NeuralNetworks([3,4,2]) # 定义神经网络 nn.

用numpy可以灵活定义神经网络结构,还可以应用numpy强大的矩阵运算功能!

 

一、用法

1). 定义一个三层神经网络:

'''示例一'''
nn = NeuralNetworks([3,4,2]) # 定义神经网络
nn.fit(X,y) # 拟合
print(nn.predict(X)) #预测

说明:

  输入层节点数目:3

  隐藏层节点数目:4

  输出层节点数目:2

 

2).定义一个五层神经网络:

'''示例二'''
nn = NeuralNetworks([3,5,7,4,2]) # 定义神经网络
nn.fit(X,y) # 拟合
print(nn.predict(X)) #预测

说明:

  输入层节点数目:3

  隐藏层1节点数目:5

  隐藏层2节点数目:7

  隐藏层3节点数目:4

  输出层节点数目:2

 

二、实现

如下实现方式为本人(@hhh5460)原创。 要点: dtype=object

import numpy as np

class NeuralNetworks(object):
    ''''''
    def __init__(self, n_layers=None, active_type=None, n_iter=10000, error=0.05, alpha=0.5, lamda=0.4):
        '''搭建神经网络框架'''
        # 各层节点数目 (向量)
        self.n = np.array(n_layers) # 'n_layers必须为list类型,如:[3,4,2] 或 n_layers=[3,4,2]'
        self.size = self.n.size # 层的总数
            
        # 层 (向量)
        self.z = np.empty(self.size, dtype=object) # 先占位(置空),dtype=object !如下皆然
        self.a = np.empty(self.size, dtype=object)
        self.data_a = np.empty(self.size, dtype=object)
        
        # 偏置 (向量)
        self.b = np.empty(self.size, dtype=object)
        self.delta_b = np.empty(self.size, dtype=object)

        # 权 (矩阵)
        self.w = np.empty(self.size, dtype=object)
        self.delta_w = np.empty(self.size, dtype=object)
        
        # 填充
        for i in range(self.size):
            self.a[i] = np.zeros(self.n[i])  # 全零
            self.z[i] = np.zeros(self.n[i])  # 全零
            self.data_a[i] = np.zeros(self.n[i])  # 全零
            if i < self.size - 1:
                self.b[i] = np.ones(self.n[i+1])   # 全一
                self.delta_b[i] = np.zeros(self.n[i+1])  # 全零
                mu, sigma = 0, 0.1 # 均值、方差
                self.w[i] = np.random.normal(mu, sigma, (self.n[i], self.n[i+1]))  # # 正态分布随机化
                self.delta_w[i] = np.zeros((self.n[i], self.n[i+1]))  # 全零

 

下面完整代码是我学习斯坦福机器学习教程,完全自己敲出来的:

 

import numpy as np
'''
参考:http://ufldl.stanford.edu/wiki/index.php/%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C
'''



class NeuralNetworks(object):
    ''''''
    def __init__(self, n_layers=None, active_type=None, n_iter=10000, error=0.05, alpha=0.5, lamda=0.4):
        '''搭建神经网络框架'''
        self.n_iter = n_iter # 迭代次数
        self.error = error # 允许最大误差
        self.alpha = alpha # 学习速率
        self.lamda = lamda # 衰减因子 # 此处故意拼写错误!
        
        
        if n_layers is None:
            raise '各层的节点数目必须设置!'
        elif not isinstance(n_layers, list):
            raise 'n_layers必须为list类型,如:[3,4,2] 或 n_layers=[3,4,2]'
        # 节点数目 (向量)
        self.n = np.array(n_layers)
        self.size = self.n.size # 层的总数
            
        # 层 (向量)
        self.a = np.empty(self.size, dtype=object) # 先占位(置空),dtype=object !如下皆然
        self.z = np.empty(self.size, dtype=object)
        
        # 偏置 (向量)
        self.b = np.empty(self.size, dtype=object)
        self.delta_b = np.empty(self.size, dtype=object)

        # 权 (矩阵)
        self.w = np.empty(self.size, dtype=object)
        self.delta_w = np.empty(self.size, dtype=object)
        
        # 残差 (向量)
        self.data_a = np.empty(self.size, dtype=object)
        
        # 填充
        for i in range(self.size):
            self.a[i] = np.zeros(self.n[i])  # 全零
            self.z[i] = np.zeros(self.n[i])  # 全零
            self.data_a[i] = np.zeros(self.n[i])  # 全零
            if i < self.size - 1:
                self.b[i] = np.ones(self.n[i+1])   # 全一
                self.delta_b[i] = np.zeros(self.n[i+1])  # 全零
                mu, sigma = 0, 0.1 # 均值、方差
                self.w[i] = np.random.normal(mu, sigma, (self.n[i], self.n[i+1]))  # # 正态分布随机化
                self.delta_w[i] = np.zeros((self.n[i], self.n[i+1]))  # 全零

        # 激活函数
        self.active_functions = {
            'sigmoid': self.sigmoid,
            'tanh': self.tanh,
            'radb': self.radb,
            'line': self.line,
        }
        
        # 激活函数的导函数
        self.derivative_functions = {
            'sigmoid': self.sigmoid_d,
            'tanh': self.tanh_d,
            'radb': self.radb_d,
            'line': self.line_d,
        }
        
        if active_type is None:
            self.active_type = ['sigmoid'] * (self.size - 1) # 默认激活函数类型
        else:
            self.active_type = active_type
            
    def sigmoid(self, z):
        if np.max(z) > 600:
            z[z.argmax()] = 600
        return 1.0 / (1.0 + np.exp(-z))
            
    def tanh(self, z):
        return (np.exp(z) - np.exp(-z)) / (np.exp(z) + np.exp(-z))
            
    def radb(self, z):
        return np.exp(-z * z)
            
    def line(self, z):
        return z
            
    def sigmoid_d(self, z):
        return z * (1.0 - z)
            
    def tanh_d(self, z):
        return 1.0 - z * z
            
    def radb_d(self, z):
        return -2.0 * z * np.exp(-z * z)
            
    def line_d(self, z):
        return np.ones(z.size) # 全一
        
    def forward(self, x):
        '''正向传播(在线)''' 
        # 用样本 x 走一遍,刷新所有 z, a
        self.a[0] = x
        for i in range(self.size - 1):
            self.z[i+1] = np.dot(self.a[i], self.w[i]) + self.b[i] 
            self.a[i+1] = self.active_functions[self.active_type[i]](self.z[i+1]) # 加了激活函数

    def err(self, X, Y):
        '''误差'''
        last = self.size-1
        err = 0.0
        for x, y in zip(X, Y):
            self.forward(x)
            err += 0.5 * np.sum((self.a[last] - y)**2)
        err /= X.shape[0]
        err += sum([np.sum(w) for w in self.w[:last]**2])
        return err
    
    def backward(self, y):
        '''反向传播(在线)'''
        last = self.size - 1
        # 用样本 y 走一遍,刷新所有delta_w, delta_b
        self.data_a[last] = -(y - self.a[last]) * self.derivative_functions[self.active_type[last-1]](self.z[last]) # 加了激活函数的导函数
        for i in range(last-1, 1, -1):
            self.data_a[i] = np.dot(self.w[i], self.data_a[i+1]) * self.derivative_functions[self.active_type[i-1]](self.z[i]) # 加了激活函数的导函数
            # 计算偏导
            p_w = np.outer(self.a[i], self.data_a[i+1]) # 外积!感谢 numpy 的强大!
            p_b = self.data_a[i+1]
            # 更新 delta_w, delta_w
            self.delta_w[i] = self.delta_w[i] + p_w
            self.delta_b[i] = self.delta_b[i] + p_b
        
    def update(self, n_samples):
        '''更新权重参数'''
        last = self.size - 1
        for i in range(last):
            self.w[i] -= self.alpha * ((1/n_samples) * self.delta_w[i] + self.lamda * self.w[i])
            self.b[i] -= self.alpha * ((1/n_samples) * self.delta_b[i])
            
    def fit(self, X, Y):
        '''拟合'''
        for i in range(self.n_iter):
            # 用所有样本,依次
            for x, y in zip(X, Y):
                self.forward(x)  # 前向,更新 a, z;
                self.backward(y) # 后向,更新 delta_w, delta_b
                
            # 然后,更新 w, b
            self.update(len(X))
            
            # 计算误差
            err = self.err(X, Y)
            if err < self.error:
                break

            # 整千次显示误差(否则太无聊!)
            if i % 1000 == 0:
                print('iter: {}, error: {}'.format(i, err))

    def predict(self, X):
        '''预测'''
        last = self.size - 1
        res = []
        for x in X:
            self.forward(x)
            res.append(self.a[last])
        return np.array(res)
        

        
if __name__ == '__main__':
    nn = NeuralNetworks([2,3,4,3,1], n_iter=5000, alpha=0.4, lamda=0.3, error=0.06) # 定义神经网络

    X = np.array([[0.,0.], # 准备数据
                  [0.,1.],
                  [1.,0.],
                  [1.,1.]])
    y = np.array([0,1,1,0])
    
    nn.fit(X,y)          # 拟合
    print(nn.predict(X)) # 预测
    
    

 

目录
相关文章
|
2月前
|
机器学习/深度学习 存储 算法
【复现】尝试使用numpy对卷积神经网络中各经典结构进行改写复现
【复现】尝试使用numpy对卷积神经网络中各经典结构进行改写复现
38 0
【复现】尝试使用numpy对卷积神经网络中各经典结构进行改写复现
|
1月前
|
机器学习/深度学习 自然语言处理 并行计算
神经网络结构——CNN、RNN、LSTM、Transformer !!
神经网络结构——CNN、RNN、LSTM、Transformer !!
136 0
|
4月前
|
机器学习/深度学习 数据可视化 TensorFlow
用TensorBoard可视化tensorflow神经网络模型结构与训练过程的方法
用TensorBoard可视化tensorflow神经网络模型结构与训练过程的方法
132 0
|
4月前
|
机器学习/深度学习 数据可视化 算法
神经网络模型结构框架可视化的在线与软件绘图方法
神经网络模型结构框架可视化的在线与软件绘图方法
104 1
|
4月前
|
机器学习/深度学习 数据可视化 算法框架/工具
基于Python的神经网络模型结构框架可视化绘图简便方法
基于Python的神经网络模型结构框架可视化绘图简便方法
102 1
|
4月前
|
机器学习/深度学习 自然语言处理 TensorFlow
【Python深度学习】RNN循环神经网络结构讲解及序列回归问题实战(图文解释 附源码)
【Python深度学习】RNN循环神经网络结构讲解及序列回归问题实战(图文解释 附源码)
46 0
|
11月前
|
机器学习/深度学习 人工智能 算法
基于Transformer的人工神经网络,将有机结构的图像转换为分子结构
基于Transformer的人工神经网络,将有机结构的图像转换为分子结构
180 0
|
6月前
|
机器学习/深度学习 传感器 缓存
可分离高斯神经网络:结构、分析和函数逼近
可分离高斯神经网络:结构、分析和函数逼近
87 0
|
7月前
|
机器学习/深度学习 数据采集 人工智能
头疼!卷积神经网络是什么?CNN结构、训练与优化一文全解
头疼!卷积神经网络是什么?CNN结构、训练与优化一文全解
61 0
|
11月前
|
机器学习/深度学习 数据可视化 算法
前馈神经网络--Rosenblatt感知器模型结构和实现代码
本文基于深度学习中的感知器,了解一下Rosenblatt感知器的原理和可视化展示。
164 0

热门文章

最新文章