视觉智能开放平台

首页 标签 视觉智能开放平台
【一步步开发AI运动小程序】六、人体骨骼图绘制
随着AI技术的发展,阿里体育等公司推出的AI运动APP如“乐动力”、“天天跳绳”等,使云上运动会、线上健身等概念广受欢迎。本文将引导您从零开始,利用“云智AI运动识别小程序插件”,在小程序中实现类似功能,包括人体骨骼图的绘制原理及其实现代码,确保骨骼图与人体图像精准重合。下篇将继续介绍运动分析方法。
【一步步开发AI运动小程序】七、进行运动计时、计数
随着AI技术的发展,阿里体育推出的“乐动力”、“天天跳绳”等APP,使云上运动会、AI体育指导等概念备受关注。本文将引导您从零开始,利用“云智AI运动识别小程序插件”,在小程序中实现类似功能。通过插件的`sports`和`calc`命名空间,可轻松实现运动检测、计时计数等功能。示例代码展示了如何创建并使用俯卧撑运动分析器,以及如何通过摄像头捕获图像进行人体识别和运动分析。敬请期待后续关于姿态分析的内容。
图片修复
该技术在图片重新上色和色彩增强方面表现突出,图像去噪效果也很好。如果能加入人像增强功能以提升清晰度,将更加完美。
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
数据结构与算法系列学习之串的定义和基本操作、串的储存结构、基本操作的实现、朴素模式匹配算法、KMP算法等代码举例及图解说明;【含常见的报错问题及其对应的解决方法】你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
2月前
| |
来自: 视觉智能
拿下奇怪的前端报错(六):多摄手机webrtc拉取视频流会导致应用崩溃,从而无法进行人像扫描
本文介绍了一种解决手机摄像头切换导致应用崩溃的问题的方法。针对不支持facingMode配置的四摄手机,通过缓存和序号切换的方式,确保应用在特定设备上不会频繁崩溃,提升用户体验。
|
2月前
| |
来自: 视觉智能
FFmpeg开发笔记(六十)使用国产的ijkplayer播放器观看网络视频
ijkplayer是由Bilibili基于FFmpeg3.4研发并开源的播放器,适用于Android和iOS,支持本地视频及网络流媒体播放。本文详细介绍如何在新版Android Studio中导入并使用ijkplayer库,包括Gradle版本及配置更新、导入编译好的so文件以及添加直播链接播放代码等步骤,帮助开发者顺利进行App调试与开发。更多FFmpeg开发知识可参考《FFmpeg开发实战:从零基础到短视频上线》。
|
2月前
| |
来自: 视觉智能
FFmpeg开发笔记(五十九)Linux编译ijkplayer的Android平台so库
ijkplayer是由B站研发的移动端播放器,基于FFmpeg 3.4,支持Android和iOS。其源码托管于GitHub,截至2024年9月15日,获得了3.24万星标和0.81万分支,尽管已停止更新6年。本文档介绍了如何在Linux环境下编译ijkplayer的so库,以便在较新的开发环境中使用。首先需安装编译工具并调整/tmp分区大小,接着下载并安装Android SDK和NDK,最后下载ijkplayer源码并编译。详细步骤包括环境准备、工具安装及库编译等。更多FFmpeg开发知识可参考相关书籍。
|
2月前
| |
来自: 视觉智能
FFmpeg开发笔记(五十八)把32位采样的MP3转换为16位的PCM音频
《FFmpeg开发实战:从零基础到短视频上线》一书中的“5.1.2 把音频流保存为PCM文件”章节介绍了将媒体文件中的音频流转换为原始PCM音频的方法。示例代码直接保存解码后的PCM数据,保留了原始音频的采样频率、声道数量和采样位数。但在实际应用中,有时需要特定规格的PCM音频。例如,某些语音识别引擎仅接受16位PCM数据,而标准MP3音频通常采用32位采样,因此需将32位MP3音频转换为16位PCM音频。
|
2月前
| |
来自: 视觉智能
FFmpeg开发笔记(五十七)使用Media3的Transformer加工视频文件
谷歌推出的Transformer,作为Jetpack Media3架构的一部分,助力开发者实现音视频格式转换与编辑。Media3简化了媒体处理流程,提升了定制性和可靠性。Transformer可用于剪辑、添加滤镜等操作,其示例代码可在指定GitHub仓库中找到。要使用Transformer,需在`build.gradle`中添加相关依赖,并按文档编写处理逻辑,最终完成音视频转换任务。具体步骤包括配置剪辑参数、设置空间效果以及监听转换事件等。
|
2月前
| |
来自: 视觉智能
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
该专栏专注于YOLOv8的 Neck 部分改进,融合了 BiFPN 网络,大幅提升检测性能。BiFPN 通过高效的双向跨尺度连接和加权特征融合,解决了传统 FPN 的单向信息流限制。文章详细介绍了 BiFPN 的原理及其实现方法,并提供了核心代码修改指导。点击链接订阅专栏,每周定时更新,助您快速提升模型效果。推荐指数:⭐️⭐️⭐️⭐️,涨点指数:⭐️⭐️⭐️⭐️。
免费试用