KAN结合Transformer,真有团队搞出了解决扩展缺陷的KAT
【10月更文挑战第15天】Transformer模型在深度学习中广泛应用,但其扩展性存在局限。为此,研究人员提出了Kolmogorov-Arnold Transformer(KAT)模型,通过引入理性基函数、Group KAN和方差保持初始化等创新设计,显著提升了模型的性能和扩展性。实验结果显示,KAT在图像识别、目标检测和语义分割任务中均表现出色,但在计算成本和训练资源方面仍有改进空间。
梯度累积的隐藏陷阱:Transformer库中梯度累积机制的缺陷与修正
在本地微调大规模语言模型时,由于GPU显存限制,通常采用梯度累积技术来模拟大批次训练。然而,实际研究表明,梯度累积方法在主流深度学习框架中会导致模型性能显著下降,尤其是在多GPU环境中。本文详细探讨了梯度累积的基本原理、应用场景及存在的问题,并通过实验验证了修正方案的有效性。研究指出,该问题可能在过去多年中一直存在且未被发现,影响了模型的训练效果。