一、系统架构设计
% 主程序框架
[preprocessed, mask] = preprocessImage(rawImage); % 图像预处理
edges = detectCrackEdges(preprocessed); % 裂缝边缘检测
regions = extractCrackRegions(edges, mask); % 裂缝区域提取
features = computeFractalFeatures(regions); % 分形特征计算
labels = classifyCracks(features); % 裂缝分类
visualizeResults(rawImage, regions, labels); % 结果可视化
二、核心
1. 图像预处理
function [processed, mask] = preprocessImage(img)
% 转换为灰度图像
gray = rgb2gray(img);
% 自适应直方图均衡化
enhanced = adapthisteq(gray);
% 多尺度分解去噪
[low, high] = wmsfilter(enhanced, 'db3', 3);
denoised = low + 0.5*high;
% 生成路面掩膜
[mask, ~] = segmentRoad(denoised);
processed = imadjust(denoised, stretchlim(denoised), []);
end
2. 裂缝边缘检测
function edges = detectCrackEdges(img)
% 改进Canny算法参数
sigma = 1.5;
lowThresh = 0.1;
highThresh = 0.3;
% 方向梯度计算
[Gx, Gy] = imgradientxy(img, 'sobel');
gradMag = sqrt(Gx.^2 + Gy.^2);
gradDir = atan2d(Gy, Gx);
% 非极大值抑制
suppressed = nonmaxsuppression(gradMag, gradDir);
% 双阈值检测
edges = edge(img, 'canny', [lowThresh highThresh], sigma);
% 边缘连接优化
edges = bwareaopen(edges, 50);
edges = imclose(edges, strel('disk',3));
end
3. 裂缝区域提取
function regions = extractCrackRegions(edges, roadMask)
% 形态学操作
se = strel('diamond',2);
opened = imopen(edges, se);
closed = imclose(opened, se);
% 区域生长算法
markers = imextendedmin(closed, 0.2);
L = watershed(closed);
% 提取连通区域
stats = regionprops(L, 'Area', 'Centroid', 'BoundingBox');
regions = struct('BoundingBox', [], 'Area', []);
for i = 1:numel(stats)
if stats(i).Area > 500 && ismember(L(i), unique(L(roadMask==1)))
regions(end+1) = stats(i);
end
end
end
4. 分形特征计算
function features = computeFractalFeatures(regions)
features = struct('FractalDim', [], 'Length', [], 'Width', []);
for i = 1:numel(regions)
% 计算分形维数
fd = computeFractalDimension(regions(i).BoundingBox);
% 计算裂缝尺寸
stats = regionprops(regions(i).BoundingBox, 'MajorAxisLength', 'MinorAxisLength');
features(i).FractalDim = fd;
features(i).Length = stats.MajorAxisLength;
features(i).Width = stats.MinorAxisLength;
end
end
function fd = computeFractalDimension(bbox)
% 基于盒计数法
img = imcrop(imread('road_crack.jpg'), bbox);
[counts, ~] = imhist(img);
p = counts / numel(img);
% 线性回归计算分形维数
log_counts = log10(counts(find(p>0)));
log_scale = log10(1./find(p>0));
p = polyfit(log_scale, log_counts, 1);
fd = -p(1);
end
三、深度学习增强模块
1. 轻量化CNN模型
layers = [
imageInputLayer([256 256 3])
convolution2dLayer(3, 16, 'Padding', 'same')
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
convolution2dLayer(3, 32, 'Padding', 'same')
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
fullyConnectedLayer(64)
reluLayer
dropoutLayer(0.5)
fullyConnectedLayer(3) % 3类:细缝/宽缝/网裂
softmaxLayer
classificationLayer];
2. 迁移学习实现
% 加载预训练模型
net = alexnet;
% 修改最后三层
layers = net.Layers;
layers(end-2) = convolution2dLayer(1, 3, 'Name', 'new_conv');
layers(end-1) = reluLayer('Name', 'new_relu');
layers(end) = classificationLayer('Name', 'new_classoutput');
% 数据增强
augmenter = imageDataAugmenter('RandRotation', [-10 10], ...
'RandXReflection', true, 'RandYReflection', true);
% 训练选项
options = trainingOptions('adam',...
'MaxEpochs', 20,...
'MiniBatchSize', 32,...
'InitialLearnRate', 0.001,...
'Shuffle', 'every-epoch',...
'ValidationData', validationData,...
'ValidationFrequency', 30);
四、工程化优化策略
1. 多尺度处理
function multiScaleFeatures = computeMultiScale(img)
scales = [1, 0.5, 0.25];
features = cell(1,numel(scales));
for i = 1:numel(scales)
scaledImg = imresize(img, scales(i));
features{
i} = extractHOGFeatures(scaledImg);
end
multiScaleFeatures = cat(2, features{
:});
end
2. GPU加速
% 启用GPU计算
gpuImg = gpuArray(img);
gpuEdges = edge(gpuImg, 'canny');
% 并行区域提取
parfor i = 1:numel(regions)
regionFeatures(i) = extractFeatures(regions(i));
end
推荐代码 matlab高速公路的裂缝进行检测 www.youwenfan.com/contentald/53261.html
五、结果可视化与报告
function visualizeResults(img, regions, labels)
figure;
imshow(img);
hold on;
colors = lines(numel(unique(labels)));
for i = 1:numel(regions)
% 绘制边界框
rectangle('Position', regions(i).BoundingBox, ...
'EdgeColor', colors(labels(i),:), 'LineWidth', 2);
% 显示分类结果
text(regions(i).BoundingBox(1), regions(i).BoundingBox(2)-10, ...
sprintf('Class: %d', labels(i)), ...
'Color', colors(labels(i),:), 'FontSize', 12);
end
% 生成检测报告
report = struct(...
'TotalCracks', numel(regions),...
'ClassDistribution', histcounts(labels),...
'AvgLength', mean([regions.Length]));
disp('检测报告:');
disp(report);
end
六、典型应用场景
- 施工期质量检测
- 检测新铺路面的早期裂缝
- 自动标记裂缝位置与类型
- 养护期病害管理
- 定期巡检裂缝发展情况
- 生成维修优先级热力图
- 交通事故分析
- 识别撞击导致的放射状裂缝
- 重建事故车辆行驶轨迹