目录
基于iris莺尾花数据集(PCA处理+三维散点图可视化)利用kNN算法实现分类预测
相关文章
ML之kNNC:基于iris莺尾花数据集(PCA处理+三维散点图可视化)利用kNN算法实现分类预测
ML之kNNC:基于iris莺尾花数据集(PCA处理+三维散点图可视化)利用kNN算法实现分类预测实现
基于iris莺尾花数据集(PCA处理+三维散点图可视化)利用kNN算法实现分类预测
设计思路
输出结果
1. (149, 5) 2. 5.1 3.5 1.4 0.2 Iris-setosa 3. 0 4.9 3.0 1.4 0.2 Iris-setosa 4. 1 4.7 3.2 1.3 0.2 Iris-setosa 5. 2 4.6 3.1 1.5 0.2 Iris-setosa 6. 3 5.0 3.6 1.4 0.2 Iris-setosa 7. 4 5.4 3.9 1.7 0.4 Iris-setosa 8. (149, 5) 9. Sepal_Length Sepal_Width Petal_Length Petal_Width type 10. 0 4.5 2.3 1.3 0.3 Iris-setosa 11. 1 6.3 2.5 5.0 1.9 Iris-virginica 12. 2 5.1 3.4 1.5 0.2 Iris-setosa 13. 3 6.3 3.3 6.0 2.5 Iris-virginica 14. 4 6.8 3.2 5.9 2.3 Iris-virginica 15. 切分点: 29 16. label_classes: ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'] 17. kNNDIY模型预测,基于原数据: 0.95 18. kNN模型预测,基于原数据预测: [0.96666667 1. 0.93333333 1. 0.93103448] 19. kNN模型预测,原数据PCA处理后: [1. 0.96 0.95918367]
核心代码
1. class KNeighborsClassifier Found at: sklearn.neighbors._classification 2. 3. class KNeighborsClassifier(NeighborsBase, KNeighborsMixin, 4. SupervisedIntegerMixin, ClassifierMixin): 5. """Classifier implementing the k-nearest neighbors vote. 6. 7. Read more in the :ref:`User Guide <classification>`. 8. 9. Parameters 10. ---------- 11. n_neighbors : int, default=5 12. Number of neighbors to use by default for :meth:`kneighbors` queries. 13. 14. weights : {'uniform', 'distance'} or callable, default='uniform' 15. weight function used in prediction. Possible values: 16. 17. - 'uniform' : uniform weights. All points in each neighborhood 18. are weighted equally. 19. - 'distance' : weight points by the inverse of their distance. 20. in this case, closer neighbors of a query point will have a 21. greater influence than neighbors which are further away. 22. - [callable] : a user-defined function which accepts an 23. array of distances, and returns an array of the same shape 24. containing the weights. 25. 26. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto' 27. Algorithm used to compute the nearest neighbors: 28. 29. - 'ball_tree' will use :class:`BallTree` 30. - 'kd_tree' will use :class:`KDTree` 31. - 'brute' will use a brute-force search. 32. - 'auto' will attempt to decide the most appropriate algorithm 33. based on the values passed to :meth:`fit` method. 34. 35. Note: fitting on sparse input will override the setting of 36. this parameter, using brute force. 37. 38. leaf_size : int, default=30 39. Leaf size passed to BallTree or KDTree. This can affect the 40. speed of the construction and query, as well as the memory 41. required to store the tree. The optimal value depends on the 42. nature of the problem. 43. 44. p : int, default=2 45. Power parameter for the Minkowski metric. When p = 1, this is 46. equivalent to using manhattan_distance (l1), and euclidean_distance 47. (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. 48. 49. metric : str or callable, default='minkowski' 50. the distance metric to use for the tree. The default metric is 51. minkowski, and with p=2 is equivalent to the standard Euclidean 52. metric. See the documentation of :class:`DistanceMetric` for a 53. list of available metrics. 54. If metric is "precomputed", X is assumed to be a distance matrix and 55. must be square during fit. X may be a :term:`sparse graph`, 56. in which case only "nonzero" elements may be considered neighbors. 57. 58. metric_params : dict, default=None 59. Additional keyword arguments for the metric function. 60. 61. n_jobs : int, default=None 62. The number of parallel jobs to run for neighbors search. 63. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. 64. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` 65. for more details. 66. Doesn't affect :meth:`fit` method. 67. 68. Attributes 69. ---------- 70. classes_ : array of shape (n_classes,) 71. Class labels known to the classifier 72. 73. effective_metric_ : str or callble 74. The distance metric used. It will be same as the `metric` parameter 75. or a synonym of it, e.g. 'euclidean' if the `metric` parameter set to 76. 'minkowski' and `p` parameter set to 2. 77. 78. effective_metric_params_ : dict 79. Additional keyword arguments for the metric function. For most 80. metrics 81. will be same with `metric_params` parameter, but may also contain the 82. `p` parameter value if the `effective_metric_` attribute is set to 83. 'minkowski'. 84. 85. outputs_2d_ : bool 86. False when `y`'s shape is (n_samples, ) or (n_samples, 1) during fit 87. otherwise True. 88. 89. Examples 90. -------- 91. >>> X = [[0], [1], [2], [3]] 92. >>> y = [0, 0, 1, 1] 93. >>> from sklearn.neighbors import KNeighborsClassifier 94. >>> neigh = KNeighborsClassifier(n_neighbors=3) 95. >>> neigh.fit(X, y) 96. KNeighborsClassifier(...) 97. >>> print(neigh.predict([[1.1]])) 98. [0] 99. >>> print(neigh.predict_proba([[0.9]])) 100. [[0.66666667 0.33333333]] 101. 102. See also 103. -------- 104. RadiusNeighborsClassifier 105. KNeighborsRegressor 106. RadiusNeighborsRegressor 107. NearestNeighbors 108. 109. Notes 110. ----- 111. See :ref:`Nearest Neighbors <neighbors>` in the online 112. documentation 113. for a discussion of the choice of ``algorithm`` and ``leaf_size``. 114. 115. .. warning:: 116. 117. Regarding the Nearest Neighbors algorithms, if it is found that two 118. neighbors, neighbor `k+1` and `k`, have identical distances 119. but different labels, the results will depend on the ordering of the 120. training data. 121. 122. https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm 123. """ 124. @_deprecate_positional_args 125. def __init__(self, n_neighbors=5, 126. *, weights='uniform', algorithm='auto', leaf_size=30, 127. p=2, metric='minkowski', metric_params=None, n_jobs=None, ** 128. kwargs): 129. super().__init__(n_neighbors=n_neighbors, algorithm=algorithm, 130. leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, 131. n_jobs=n_jobs, **kwargs) 132. self.weights = _check_weights(weights) 133. 134. def predict(self, X): 135. """Predict the class labels for the provided data. 136. 137. Parameters 138. ---------- 139. X : array-like of shape (n_queries, n_features), \ 140. or (n_queries, n_indexed) if metric == 'precomputed' 141. Test samples. 142. 143. Returns 144. ------- 145. y : ndarray of shape (n_queries,) or (n_queries, n_outputs) 146. Class labels for each data sample. 147. """ 148. X = check_array(X, accept_sparse='csr') 149. neigh_dist, neigh_ind = self.kneighbors(X) 150. classes_ = self.classes_ 151. _y = self._y 152. if not self.outputs_2d_: 153. _y = self._y.reshape((-1, 1)) 154. classes_ = [self.classes_] 155. n_outputs = len(classes_) 156. n_queries = _num_samples(X) 157. weights = _get_weights(neigh_dist, self.weights) 158. y_pred = np.empty((n_queries, n_outputs), dtype=classes_[0]. 159. dtype) 160. for k, classes_k in enumerate(classes_): 161. if weights is None: 162. mode, _ = stats.mode(_y[neigh_indk], axis=1) 163. else: 164. mode, _ = weighted_mode(_y[neigh_indk], weights, axis=1) 165. mode = np.asarray(mode.ravel(), dtype=np.intp) 166. y_pred[:k] = classes_k.take(mode) 167. 168. if not self.outputs_2d_: 169. y_pred = y_pred.ravel() 170. return y_pred 171. 172. def predict_proba(self, X): 173. """Return probability estimates for the test data X. 174. 175. Parameters 176. ---------- 177. X : array-like of shape (n_queries, n_features), \ 178. or (n_queries, n_indexed) if metric == 'precomputed' 179. Test samples. 180. 181. Returns 182. ------- 183. p : ndarray of shape (n_queries, n_classes), or a list of n_outputs 184. of such arrays if n_outputs > 1. 185. The class probabilities of the input samples. Classes are ordered 186. by lexicographic order. 187. """ 188. X = check_array(X, accept_sparse='csr') 189. neigh_dist, neigh_ind = self.kneighbors(X) 190. classes_ = self.classes_ 191. _y = self._y 192. if not self.outputs_2d_: 193. _y = self._y.reshape((-1, 1)) 194. classes_ = [self.classes_] 195. n_queries = _num_samples(X) 196. weights = _get_weights(neigh_dist, self.weights) 197. if weights is None: 198. weights = np.ones_like(neigh_ind) 199. all_rows = np.arange(X.shape[0]) 200. probabilities = [] 201. for k, classes_k in enumerate(classes_): 202. pred_labels = _y[:k][neigh_ind] 203. proba_k = np.zeros((n_queries, classes_k.size)) 204. # a simple ':' index doesn't work right 205. for i, idx in enumerate(pred_labels.T): # loop is O(n_neighbors) 206. proba_k[all_rowsidx] += weights[:i] 207. 208. # normalize 'votes' into real [0,1] probabilities 209. normalizer = proba_k.sum(axis=1)[:np.newaxis] 210. normalizer[normalizer == 0.0] = 1.0 211. proba_k /= normalizer 212. probabilities.append(proba_k) 213. 214. if not self.outputs_2d_: 215. probabilities = probabilities[0] 216. return probabilities