基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。

1.程序功能描述
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真。对比BP神经网络,遗传优化bp神经网络以及改进遗传优化BP神经网络。

2.测试软件版本以及运行结果展示
MATLAB2022A版本运行

三个算法的误差对比:

fcda882608d6d8f7c6935a84509f064f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

三个算法的数据预测曲线对比:

e0f72838f8c6e191cd8777001ba0aaa2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
ba0bd3067b83377df57e6883eda50df8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

3.核心程序

%构建BP网络
net        = newff(train_data,train_aim,Num_Hidden);

ERR1 = [];
ERR2 = [];
ERR3 = [];
for j = 1:5
    j
    %通过改进遗传算法优化BP参数
    net        = func_newGA2(net,Num_In,Num_Hidden,Num_Out,train_data,train_aim);
    %网络训练
    net.trainParam.showWindow = 0;
    net        = train(net,train_data,train_aim);
    outputs    = sim(net,test_data);
    d1         = test_aim*(Maxs-Mins) + Mins;
    d2         = outputs*(Maxs-Mins) + Mins;
    ERR1   = [ERR1,mean(abs(d1-d2)./d2) ];
    ERR2   = [ERR2,mean((abs(d1-d2)./d2).^2) ];
    ERR3   = [ERR3,std((abs(d1-d2)./d2).^2) ];
end


figure;
plot(d1,'b');
hold on
plot(d2,'r');
legend('真实股价','预测股价');
xlabel('时间(days)');
ylabel('收盘价格对比');


disp('平均误差:');
mean(ERR1)
disp('平方差:');
mean(ERR2)
disp('均方差:');
mean(ERR3)


save r2.mat d1 d2
04_004m

4.本算法原理
基于遗传优化的BP(Backpropagation)神经网络金融序列预测是一种结合了遗传算法(Genetic Algorithm, GA)的优化能力和BP神经网络强大非线性拟合能力的混合预测模型。这种模型在处理金融时间序列数据,如股票价格、汇率、商品期货价格等,具有独特的优势,因为它能够有效应对金融市场的复杂性、非线性和不确定性。

4.1 遗传算法(GA)原理
遗传算法是一种启发式搜索算法,灵感来源于自然界中的生物进化过程,包括选择、交叉(杂交)和变异三大基本操作。其目标是通过迭代搜索找到问题的最优解或近似最优解。

编码:首先,将问题的解(在这里是BP神经网络的权重和阈值)编码为染色体(Chromosome),通常采用二进制编码或实数编码。

适应度函数:定义一个评价标准(Fitness Function),衡量每个解的质量。在金融序列预测中,适应度函数通常是预测误差的倒数或负对数,即预测误差越小,适应度越高。

2fe3d120b73ed95ad664e6abd6636d60_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

其中,yi​是实际观测值,y^​i​是预测值,N是样本数。

选择:基于轮盘赌选择法等策略,选择适应度高的个体进入下一代,以模拟自然界中的“适者生存”。

交叉:随机选择两个个体进行基因交换,以产生新的后代,促进多样性。

变异:以一定概率随机改变某些基因值,增加搜索空间的探索范围。

终止条件:当达到预设的遗传代数(Generation)或适应度达到预设阈值时,算法停止,输出当前最优解。

4.2 BP神经网络原理
BP神经网络是一种多层前馈网络,包括输入层、隐藏层和输出层。它通过反向传播误差来调整网络权重,实现对输入数据的非线性拟合。

2c12f6edcf99b23e6dc1a8ec798b5269_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

4.3 遗传优化BP神经网络结合应用
将遗传算法引入BP神经网络的训练过程,主要用来优化网络的初始权重和阈值,以期找到更优的网络参数配置,从而提高预测精度。

初始化:使用遗传算法生成一组BP神经网络的初始参数(权重和阈值)。

遗传操作:对这批参数进行选择、交叉和变异操作,生成新的一代参数。

BP训练:将每一代遗传产生的参数配置应用到BP神经网络中,进行前向传播和反向传播学习,计算适应度。

迭代优化:重复遗传操作和BP训练过程,直到满足停止条件,如适应度不再显著提高或达到预设的遗传代数。

预测:利用经过遗传优化的BP神经网络对金融序列进行预测,输出预测值。

4.4 遗传算法简要改进
进行遗传算法的关键点之一是保证种群的多样性。遗传算法的交叉和变异的判断,就是根据每个染色体个体的最大适应度值和平均适应度的差值的大小来判断,即:
7caed5c5a17a957b22e0cf04e0b6df64_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   当差值较大的时候,说明染色体差异较大,当差值较小的时候,说明染色体差异较小,当差异较小的时候,就会容易出现局部收敛。为了防止这种情况出现,我们需要自适应的调整这种变异概率和交叉概率。

662c79f7c5105cc7a7eae0d645462a10_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

相关文章
|
6天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
4天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
3天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
8天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
5天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
6天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
12天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
14天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
11天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
15天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。