基于DWA优化算法的机器人路径规划matlab仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,1000CU*H 3个月
简介: 本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。

1.程序功能描述
基于DWA优化算法的机器人路径规划matlab仿真。给出路径规划和路径预测输出。

2.测试软件版本以及运行结果展示
MATLAB2022A版本运行

cb59307f009513739a53aaa03d5f2cb8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

3.核心程序

for i=1:length(x)
    scatter(x(i),y(i),50,'red');  %路径规划给出的点
    hold on
end

fx = 0;  
fy = 0;  
L  = length(Time_seq)-5; 

for i=1:L  
    %对x序列进行规划
    [fx, xx, ~] = func_path_plan1(fx,dt,Time_seq,x,i);
    %对y序列进行规划
    [fy, yy, ~] = func_path_plan1(fy,dt,Time_seq,y,i);
    plot(xx,yy,'b','LineWidth',1) 
    grid on
    hold on
end 
%预测
[xx, ~] = func_path_plan2(fx,dt,Time_seq,x,L);
[yy, ~] = func_path_plan2(fy,dt,Time_seq,y,L);
hold on
plot(xx,yy,'g','LineWidth',2) 
grid on
title("轨迹图")
xlabel("X")
ylabel("Y")
52

4.本算法原理
动态窗口法(Dynamic Window Approach, DWA)是一种在机器人路径规划中广泛使用的局部实时避障算法,特别适用于动态环境下的自主导航。DWA的核心思想是在考虑机器人动力学约束的前提下,通过不断调整机器人的速度和方向,寻找一条能够安全避障并接近目标的路径。算法的关键在于定义一个“动态窗口”,在这个窗口内生成一系列候选动作,并通过评价函数评估每个动作的优劣,从而选取当前最优动作执行。

  首先,定义机器人的速度空间,包括线速度v和角速度ω。动态窗口W(vmin​,vmax​,ωmin​,ωmax​)由四个参数限定,代表了机器人在当前状态下可能采取的最小子速度、最大子速度、最小角速度和最大角速度。这些参数基于机器人的物理限制、环境条件以及安全距离等因素确定。

   在动态窗口内,以一定的分辨率对v和ω进行采样,生成一系列候选动作集A。对于每个采样点(vi​,ωj​),可以计算出机器人在下一个时间步t+δt的位置和朝向,这里δt是采样时间间隔。利用机器人的运动模型,如差速驱动模型,可以得到位置更新方程:

5ee81fd4eb9e01141bb0c2ac54c9ee82_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    对于每一个候选动作,计算一个综合评价分数,以衡量该动作的优劣。评价函数通常考虑以下因素:

   目标方向性(Goal Direction):鼓励机器人朝向目标移动,可以使用目标向量与机器人前进方向之间的夹角余弦值作为衡量标准,记作g。

   障碍物距离(Obstacle Clearance):确保机器人与所有障碍物保持安全距离,可通过计算预测轨迹与障碍物最近距离的倒数来量化,记作o。

  速度一致性(Velocity Consistency):保持机器人运动的连贯性,避免急停急启,可通过与期望速度的偏差来衡量,记作vc​。

1fea02b39fc57ae7408f0de0eb19ed08_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   DWA算法是在线运行的,每执行完一步,根据新的机器人状态和环境信息重新计算动态窗口和候选动作集,持续迭代直至达到目标或任务终止。
相关文章
|
1月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
182 0
|
1月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
140 2
|
1月前
|
5G
基于IEEE 802.11a标准的物理层MATLAB仿真
基于IEEE 802.11a标准的物理层MATLAB仿真
155 0
|
1月前
|
算法
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
|
1月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
137 8
|
1月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
145 8
|
1月前
|
传感器 机器学习/深度学习 算法
【无人机协同】动态环境下多无人机系统的协同路径规划与防撞研究(Matlab代码实现)
【无人机协同】动态环境下多无人机系统的协同路径规划与防撞研究(Matlab代码实现)
136 0
|
1月前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
118 0
|
1月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
110 0
|
1月前
|
存储 监控 并行计算
目标跟踪中常用点迹航迹数据关联算法的MATLAB实现
通过计算测量点与预测点之间的欧氏距离,选择最近邻点进行关联,适用于单目标跟踪场景。